V Bolzanu probíhá konference SFSCON (South Tyrol Free Software Conference). Jean-Baptiste Kempf, zakladatel a prezident VideoLAN a klíčový vývojář VLC media playeru, byl na ní oceněn cenou European SFS Award 2025 udělovanou Free Software Foundation Europe (FSFE) a Linux User Group Bolzano‑Bozen (LUGBZ).
Open-source minimalistický trackball Ploopy Nano byl po modelech modelech Classic a Thumb Trackball také aktualizován. Nová verze Nano 2 používá optický senzor PAW3222 a k původně beztlačítkovému designu přidává jedno tlačítko, které ve výchozí konfiguraci firmwaru QMK přepíná režim posouvání koulí. Sestavený trackball nyní vyjde na 60 kanadských dolarů (bez dopravy a DPH).
Github publikoval Octoverse 2025 (YouTube), tj. každoroční přehled o stavu open source a veřejných softwarových projektů na GitHubu. Každou sekundu se připojil více než jeden nový vývojář. Nejpoužívanějším programovacím jazykem se stal TypeScript.
Kit je nový maskot webového prohlížeče Firefox.
Mastodon (Wikipedie) - sociální síť, která není na prodej - byl vydán ve verzi 4.5. Přehled novinek s náhledy v oznámení na blogu.
Německo zvažuje, že zaplatí místním telekomunikačním operátorům včetně Deutsche Telekom, aby nahradili zařízení od čínské firmy Huawei. Náklady na výměnu by mohly přesáhnout dvě miliardy eur (bezmála 49 miliard Kč). Jeden scénář počítá s tím, že vláda na tento záměr použije prostředky určené na obranu či infrastrukturu.
Po dvaceti letech skončil leader japonské SUMO (SUpport.MOzilla.org) komunity Marsf. Důvodem bylo nasazení sumobota, který nedodržuje nastavené postupy a hrubě zasahuje do překladů i archivů. Marsf zároveň zakázal použití svých příspěvků a dat k učení sumobota a AI a požádal o vyřazení svých dat ze všech učebních dat.
Úřad pro ochranu hospodářské soutěže zahajuje sektorové šetření v oblasti mobilních telekomunikačních služeb poskytovaných domácnostem v České republice. Z poznatků získaných na základě prvotní analýzy provedené ve spolupráci s Českým telekomunikačním úřadem (ČTÚ) ÚOHS zjistil, že vzájemné vztahy mezi operátory je zapotřebí detailněji prověřit kvůli možné nefunkčnosti některých aspektů konkurence na trzích, na nichž roste tržní podíl klíčových hráčů a naopak klesá význam nezávislých virtuálních operátorů.
Různé audity bezpečnostních systémů pařížského muzea Louvre odhalily závažné problémy v oblasti kybernetické bezpečnosti a tyto problémy přetrvávaly déle než deset let. Jeden z těchto auditů, který v roce 2014 provedla francouzská národní agentura pro kybernetickou bezpečnost, například ukázal, že heslo do kamerového systému muzea bylo „Louvre“. 😀
Z upstreamu GNOME Mutter byl zcela odstraněn backend X11. GNOME 50 tedy poběží už pouze nad Waylandem. Aplikace pro X11 budou využívat XWayland.
if (x > y) {
z = x - y
} else {
z = y - x
}
#define ABS_DIFF(X,Y) ((X > Y) ? (X - Y) : (Y - X))
Řešení dotazu:
/* Return the absolute value of I. */
int
abs (int i)
{
return i < 0 ? -i : i;
}
na tom mym srotu (i686) to pri pouziti makra a prelozeni s -O1 vychazi podobne jako volani abs, a mezi pouzitim short a int neni taktez temer rozdil.
Dost mozny, ze to brzdi ten short. Prace s typem, kterej nema velikost slova muze bejt asi drazsi.
int abs(int i)
{
int t = i >> (32 - 1);
return (i ^ t) - t;
}(a presne to isté generuje gcc pre 32 bitový int)
unsigned short my_abs(int i)
{
int t = i >> (sizeof(int) * CHAR_BIT - 1);
/* patent free */
return (i + t) ^ t;
/*return (i ^ t) - t;*/
}
Jinak ta varianta s minusem je možná patentově chráněna (viz.) :)
Např.:
unsigned short x = 5; unsigned short y = 20; unsigned short z = my_abs(x - y);Přetypování my_abs(x - y) typicky zabere jeden procesorový cyklus. Přetypování int na unsigned short je bez výkonové penalizace.
return i < 0 ? -i : i;Všechny tři metody jsou ve výsledném kódu totožné. Doporučuji nepoužívat short, operace s ním jsou dražší než s intem (resp. longem na 64bitech).
function soucet_abs_hodnot(unsigned short *input1, unsigned short *input2, unsigned int size) {
int z = 0, i;
for (i = 0; i < size; i++) z+= abs(input1[i] - input2[i]);
return z;
}
Takhle přesně vypadá funkce kterou chci zoptimalizovat.
int abs(int i) {
if (i & 0x80000000) return -i; // hex hodnota se samozřejmě liší podle použitých číselných typů
return i;
}int sim = 0; int i; for (i = 1; i <= input2[0]; i++) sim+= abs((int) input1[i] - (int) input2[i]); return sim;
real 0m16.898s user 0m56.828s
#define MACRO_DIST(X,Y) ((X < Y) ? (Y - X) : (X - Y)) unsigned short sim = 0; for (i = 1; i <= input2[0]; i++) sim += MACRO_DIST(input1[i],input2[i]); return sim;
real 0m20.070s user 1m18.761sData ve formátu float
float sim = 0; int i; for (i = 1; i <= input2[0]; i++) sim+= fabs(input1[i] - input2[i]); return sim;
real 0m12.351s user 0m33.758s
#include <stdio.h>
#include <math.h>
// Config.
#define USE_SSE2
#define USE_SSSE3
// SSE2.
#if defined(USE_SSE2)
#include <emmintrin.h>
#endif // USE_SSE2
// SSSE3.
#if defined(USE_SSSE3)
#include <tmmintrin.h>
#endif // USE_SSE3
#define ABS_C(_Value_) abs(_Value_)
int sum_abs_u16(
const unsigned short* input1,
const unsigned short* input2,
size_t size)
{
size_t i = size;
int z = 0;
#if defined(USE_SSE2)
if (i >= 20)
{
// Align.
while ((intptr_t)input1 & (intptr_t)0xF)
{
z += ABS_C((int)input1[0] - (int)input2[0]);
if (--i == 0) return z;
input1++;
input2++;
}
// Counter.
__m128i cn = _mm_setzero_si128();
__m128i zn = _mm_setzero_si128();
// Large loop.
while (i >= 16)
{
__m128i r0, r1;
__m128i r2, r3;
__m128i r4, r5;
// Load input1, aligned.
r0 = _mm_load_si128(reinterpret_cast<const __m128i*>(input1 + 0));
r3 = _mm_load_si128(reinterpret_cast<const __m128i*>(input1 + 8));
// Load input2, unaligned.
r2 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(input2 + 0));
r4 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(input2 + 8));
// Get absolute values.
r1 = _mm_subs_epu16(r2, r0);
r0 = _mm_subs_epu16(r0, r2);
r5 = _mm_subs_epu16(r3, r4);
r4 = _mm_subs_epu16(r4, r3);
r0 = _mm_add_epi16(r0, r1);
r4 = _mm_add_epi16(r4, r5);
// Unpack to 32-bit and sum.
r1 = _mm_unpackhi_epi16(r0, zn);
r5 = _mm_unpackhi_epi16(r4, zn);
r0 = _mm_unpacklo_epi16(r0, zn);
r4 = _mm_unpacklo_epi16(r4, zn);
r0 = _mm_add_epi32(r0, r1);
r4 = _mm_add_epi32(r4, r5);
cn = _mm_add_epi32(cn, r0);
cn = _mm_add_epi32(cn, r4);
i -= 16;
input1 += 16;
input2 += 16;
}
#if defined(USE_SSSE3)
cn = _mm_hadd_epi32(cn, cn);
cn = _mm_hadd_epi32(cn, cn);
z += _mm_cvtsi128_si32(cn);
#else
cn = _mm_add_epi32(cn, _mm_shuffle_epi32(cn, _MM_SHUFFLE(2, 3, 0, 1)));
cn = _mm_add_epi32(cn, _mm_shuffle_epi32(cn, _MM_SHUFFLE(0, 1, 3, 2)));
z += _mm_cvtsi128_si32(cn);
#endif
}
#endif // USE_SSE2
// Small loop.
while (i > 0)
{
z += ABS_C((int)input1[0] - (int)input2[0]);
i--;
input1++;
input2++;
}
return z;
}
int main(int argc, char* argv[])
{
const unsigned short input1[40] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
const unsigned short input2[40] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
int sum = sum_abs_u16(input1, input2, 40);
printf("Sum=%d\n", sum);
return 0;
}
gcc -O3 -mssse3), tak vygeneruje jeste o kousek lepsi kod (protoze ma funkci abs).
// Small loop.
while (i > 0)
{
z += ABS_C((int)input1[0] - (int)input2[0]);
i--;
input1++;
input2++;
}
Prelozi nejak takhle:
movl 8(%ebp), %ebx
xorl %edx, %edx
xorl %eax, %eax
pxor %xmm4, %xmm4
pxor %xmm5, %xmm5
.p2align 4,,7
.p2align 3
.L7:
movdqu (%ebx,%eax), %xmm2
movdqu (%edi,%eax), %xmm3
movdqa %xmm2, %xmm0
movdqa %xmm3, %xmm1
punpcklwd %xmm5, %xmm0
punpcklwd %xmm5, %xmm1
addl $1, %edx
psubd %xmm1, %xmm0
punpckhwd %xmm5, %xmm2
pabsd %xmm0, %xmm0
punpckhwd %xmm5, %xmm3
paddd %xmm4, %xmm0
psubd %xmm3, %xmm2
addl $16, %eax
cmpl %edx, %ecx
pabsd %xmm2, %xmm4
paddd %xmm0, %xmm4
ja .L7
+ nejaka ta omacko okolo.
Tiskni
Sdílej: