Canonical vydal (email) Ubuntu 25.10 Questing Quokka. Přehled novinek v poznámkách k vydání. Jedná se o průběžné vydání s podporou 9 měsíců, tj. do července 2026.
ClamAV (Wikipedie), tj. multiplatformní antivirový engine s otevřeným zdrojovým kódem pro detekci trojských koní, virů, malwaru a dalších škodlivých hrozeb, byl vydán ve verzi 1.5.0.
Byla vydána nová verze 1.12.0 dynamického programovacího jazyka Julia (Wikipedie) určeného zejména pro vědecké výpočty. Přehled novinek v příspěvku na blogu a v poznámkách k vydání. Aktualizována byla také dokumentace.
V Redisu byla nalezena a v upstreamu již opravena kritická zranitelnost CVE-2025-49844 s CVSS 10.0 (RCE, vzdálené spouštění kódu).
Ministr a vicepremiér pro digitalizaci Marian Jurečka dnes oznámil, že přijme rezignaci ředitele Digitální a informační agentury Martina Mesršmída, a to k 23. říjnu 2025. Mesršmíd nabídl svou funkci během minulého víkendu, kdy se DIA potýkala s problémy eDokladů, které některým občanům znepříjemnily využití možnosti prokázat se digitální občankou u volebních komisí při volbách do Poslanecké sněmovny.
Společnost Meta představila OpenZL. Jedná se o open source framework pro kompresi dat s ohledem na jejich formát. Zdrojové kódy jsou k dispozici na GitHubu.
Google postupně zpřístupňuje českým uživatelům Režim AI (AI Mode), tj. nový režim vyhledávání založený na umělé inteligenci. Režim AI nabízí pokročilé uvažování, multimodalitu a možnost prozkoumat jakékoliv téma do hloubky pomocí dodatečných dotazů a užitečných odkazů na weby.
Programovací jazyk Python byl vydán v nové major verzi 3.14.0. Podrobný přehled novinek v aktualizované dokumentaci.
Bylo oznámeno, že Qualcomm kupuje Arduino. Současně byla představena nová deska Arduino UNO Q se dvěma čipy: MPU Qualcomm Dragonwing QRB2210, na kterém může běžet Linux, a MCU STM32U585 a vývojové prostředí Arduino App Lab.
Multiplatformní open source voxelový herní engine Luanti byl vydán ve verzi 5.14.0. Podrobný přehled novinek v changelogu. Původně se jedná o Minecraftem inspirovaný Minetest v říjnu loňského roku přejmenovaný na Luanti.
$a = bcpowmod(2, 249, 997); echo $a."\n";Spravny vysledek 161. V pythonu s tim samym neni zadny problem:
print 2**249 % 997Vysledek opet spravne a uz asi chapete kam mirim. Kod v C:
long long x = ((long long)pow(a, d)) % n; printf("x=%lld\n",x);No a asi neprekvapi, ze dojde k preteceni zobrazi se zaporny vysledek. Moje otazka je, jak toto vyresit. Vim, ze existuji knihovny pro praci s velkymi cisli (libgmp), ale tem bych se hrozne rad vyhnul. Je nejaka moznost jak toho vyresit standardnimi prostredky C/C++?
Řešení dotazu:
print 2**249 % 997Otázka je jestli to počítá tak jak bys chtěl (kvůli rychlosti apod).
a^fi(n) % n = 1kde
fi(n)
je Eulerova funkce přirozeného čísla n
. A díky prioritě operací (mocnina je prioritnější než modulo, dělení a násobení) také patrně nevyužívá identity (a*b)%n = ((a%n)*(b%n))%nkterá umožňuje počítat modulo pro mnohem menší čísla než nejdříve pronásobit a pak dělit.
V 99,99% špatně, tedy pomalu a neoptimálně. Pochybuji, že by algoritmus do normálního vzorce měl aplikovánu čínskou větu o zbytcích a také téměř určitě implementace nevyužívá identityPython prakticky neoptimalizuje. Alespoň v současných verzích. Ale problém je v tom, že i kdybys chtěl takovýto výraz optimalizovat, tak by se musela vymýtit spousta zlozvyků jako používat stejné operátory na různé účely. A i tak by programátoři byli kolikrát překvapeni, co jejich program vlastně dělá. Python pracuje nad objekty a z objektů samotných zjišťuje, jak se mají dané operace provést. Na rychlé výpočty je mnohem lepší C, které se případně z Pythonu zavolá. Na druhou stranu na první pokusy a proof of concept implementace je Python ideální už díky podpoře velkých čísel.
a také téměř určitě implementace nevyužívá identitya^fi(n) % n = 1kdefi(n)
je Eulerova funkce přirozeného číslan
.
Vezmu-li v úvahu, že φ(997) = 996 > 249, tak v tom zase tak zásadní problém nevidím. Nemluvě o tom, že pokud exponent není opravdu výrazně větší než n, bude samotný výpočet φ(n) (časová náročnost obecně odmocnina z n) trvat déle než prostě tu mocninu spočítat v příslušném ℤ/ℤ[n] (časová náročnost logaritmická vzhledem k exponentu).
Tiskni
Sdílej: