Steve Jobs a superpočítač Cray-1 budou vyobrazeny na pamětních jednodolarových mincích vyražených v příštím roce v rámci série Americká inovace. Série má 57 mincí, tj. 57 inovací. Poslední 4 mince budou vyraženy v roce 2032.
Byl zveřejněn průběžně aktualizovaný program konference OpenAlt 2025 o otevřeném softwaru a datech, IT bezpečnosti, DIY a IoT. Konference proběhne o víkendu 1. a 2. listopadu v prostorách FIT VUT v Brně. Vstup je zdarma.
Senát včera opětovně nepřijal návrh ústavního zákona, který měl do Listiny základních práv a svobod zakotvit právo občanů platit v hotovosti nebo být off-line. Návrh předložila skupina senátorů již v roce 2023. Senát dnes návrh neschválil, ale ani nezamítl. Pokud by ho přijal, dostala by ho k projednání Sněmovna a vyjádřila by se k němu vláda.
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 13.0 (Mastodon). Forgejo je fork Gitei.
Společnost Eclypsium se na svém blogu rozepsala o bezpečnostním problému počítačů Framework. Jedná se o zranitelnost v UEFI umožňující útočníkům obejít Secure Boot.
Editor kódů Zed (Wikipedie) po macOS a Linuxu s verzí 0.208.4 už běží také ve Windows.
Apple dnes představil 14palcový MacBook Pro, iPad Pro a Apple Vision Pro s novým čipem M5.
Debian pro mobilní zařízení Mobian (Wikipedie) byl vydán ve verzi 13 Trixie. Nová stabilní verze je k dispozici pro PINE64 PinePhone, PinePhone Pro a PineTab, Purism Librem 5, Google Pixel 3a a 3a XL, OnePlus 6 a 6T a Xiaomi Pocophone F1.
Operátor O2 představil tarif Datamanie 1200 GB . Nový tarif přináší 1200 GB dat s neomezenou 5G rychlostí, a také možnost neomezeného volání do všech sítí za 15 Kč na den. Při roční variantě předplatného zákazníci získají po provedení jednorázové platby celou porci dat najednou a mohou je bezstarostně čerpat kdykoli během roku. Do 13. listopadu jej O2 nabízí za zvýhodněných 2 988 Kč. Při průměrné spotřebě tak 100 GB dat vychází na 249 Kč měsíčně.
Byly publikovány informace o útoku na zařízení s Androidem pojmenovaném Pixnapping Attack (CVE-2025-48561). Aplikace může číst citlivá data zobrazovaná jinou aplikací. V demonstračním videu aplikace čte 2FA kódy z Google Authenticatoru.
$a = bcpowmod(2, 249, 997); echo $a."\n";Spravny vysledek 161. V pythonu s tim samym neni zadny problem:
print 2**249 % 997Vysledek opet spravne a uz asi chapete kam mirim. Kod v C:
long long x = ((long long)pow(a, d)) % n; printf("x=%lld\n",x);No a asi neprekvapi, ze dojde k preteceni zobrazi se zaporny vysledek. Moje otazka je, jak toto vyresit. Vim, ze existuji knihovny pro praci s velkymi cisli (libgmp), ale tem bych se hrozne rad vyhnul. Je nejaka moznost jak toho vyresit standardnimi prostredky C/C++?
Řešení dotazu:
print 2**249 % 997Otázka je jestli to počítá tak jak bys chtěl (kvůli rychlosti apod).
a^fi(n) % n = 1kde
fi(n)
je Eulerova funkce přirozeného čísla n
. A díky prioritě operací (mocnina je prioritnější než modulo, dělení a násobení) také patrně nevyužívá identity (a*b)%n = ((a%n)*(b%n))%nkterá umožňuje počítat modulo pro mnohem menší čísla než nejdříve pronásobit a pak dělit.
V 99,99% špatně, tedy pomalu a neoptimálně. Pochybuji, že by algoritmus do normálního vzorce měl aplikovánu čínskou větu o zbytcích a také téměř určitě implementace nevyužívá identityPython prakticky neoptimalizuje. Alespoň v současných verzích. Ale problém je v tom, že i kdybys chtěl takovýto výraz optimalizovat, tak by se musela vymýtit spousta zlozvyků jako používat stejné operátory na různé účely. A i tak by programátoři byli kolikrát překvapeni, co jejich program vlastně dělá. Python pracuje nad objekty a z objektů samotných zjišťuje, jak se mají dané operace provést. Na rychlé výpočty je mnohem lepší C, které se případně z Pythonu zavolá. Na druhou stranu na první pokusy a proof of concept implementace je Python ideální už díky podpoře velkých čísel.
a také téměř určitě implementace nevyužívá identitya^fi(n) % n = 1kdefi(n)
je Eulerova funkce přirozeného číslan
.
Vezmu-li v úvahu, že φ(997) = 996 > 249, tak v tom zase tak zásadní problém nevidím. Nemluvě o tom, že pokud exponent není opravdu výrazně větší než n, bude samotný výpočet φ(n) (časová náročnost obecně odmocnina z n) trvat déle než prostě tu mocninu spočítat v příslušném ℤ/ℤ[n] (časová náročnost logaritmická vzhledem k exponentu).
Tiskni
Sdílej: