Byly zveřejněny informace o kritické zranitelnosti CVE-2025-55182 s CVSS 10.0 v React Server Components. Zranitelnost je opravena v Reactu 19.0.1, 19.1.2 a 19.2.1.
Bylo rozhodnuto, že nejnovější Linux 6.18 je jádrem s prodlouženou upstream podporou (LTS). Ta je aktuálně plánována do prosince 2027. LTS jader je aktuálně šest: 5.10, 5.15, 6.1, 6.6, 6.12 a 6.18.
Byla vydána nová stabilní verze 3.23.0, tj. první z nové řady 3.23, minimalistické linuxové distribuce zaměřené na bezpečnost Alpine Linux (Wikipedie) postavené na standardní knihovně jazyka C musl libc a BusyBoxu. Přehled novinek v poznámkách k vydání.
Byla vydána verze 6.0 webového aplikačního frameworku napsaného v Pythonu Django (Wikipedie). Přehled novinek v poznámkách k vydání.
Po více než 7 měsících vývoje od vydání verze 6.8 byla vydána nová verze 6.9 svobodného open source redakčního systému WordPress. Kódové jméno Gene bylo vybráno na počest amerického jazzového klavíristy Gene Harrise (Ray Brown Trio - Summertime).
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za listopad (YouTube).
Google Chrome 143 byl prohlášen za stabilní. Nejnovější stabilní verze 143.0.7499.40 přináší řadu novinek z hlediska uživatelů i vývojářů. Podrobný přehled v poznámkách k vydání. Opraveno bylo 13 bezpečnostních chyb.
Společnost Valve aktualizovala přehled o hardwarovém a softwarovém vybavení uživatelů služby Steam. Podíl uživatelů Linuxu dosáhl 3,2 %. Nejčastěji používané linuxové distribuce jsou Arch Linux, Linux Mint a Ubuntu. Při výběru jenom Linuxu vede SteamOS Holo s 26,42 %. Procesor AMD používá 66,72 % hráčů na Linuxu.
Canonical oznámil (YouTube), že nově nabízí svou podporu Ubuntu Pro také pro instance Ubuntu na WSL (Windows Subsystem for Linux).
Samsung představil svůj nejnovější chytrý telefon Galaxy Z TriFold (YouTube). Skládačka se nerozkládá jednou, ale hned dvakrát, a nabízí displej s úhlopříčkou 10 palců. V České republice nebude tento model dostupný.
$a = bcpowmod(2, 249, 997); echo $a."\n";Spravny vysledek 161. V pythonu s tim samym neni zadny problem:
print 2**249 % 997Vysledek opet spravne a uz asi chapete kam mirim. Kod v C:
long long x = ((long long)pow(a, d)) % n;
printf("x=%lld\n",x);
No a asi neprekvapi, ze dojde k preteceni zobrazi se zaporny vysledek. Moje otazka je, jak toto vyresit. Vim, ze existuji knihovny pro praci s velkymi cisli (libgmp), ale tem bych se hrozne rad vyhnul. Je nejaka moznost jak toho vyresit standardnimi prostredky C/C++?
Řešení dotazu:
print 2**249 % 997Otázka je jestli to počítá tak jak bys chtěl (kvůli rychlosti apod).
a^fi(n) % n = 1kde
fi(n) je Eulerova funkce přirozeného čísla n. A díky prioritě operací (mocnina je prioritnější než modulo, dělení a násobení) také patrně nevyužívá identity (a*b)%n = ((a%n)*(b%n))%nkterá umožňuje počítat modulo pro mnohem menší čísla než nejdříve pronásobit a pak dělit.
V 99,99% špatně, tedy pomalu a neoptimálně. Pochybuji, že by algoritmus do normálního vzorce měl aplikovánu čínskou větu o zbytcích a také téměř určitě implementace nevyužívá identityPython prakticky neoptimalizuje. Alespoň v současných verzích. Ale problém je v tom, že i kdybys chtěl takovýto výraz optimalizovat, tak by se musela vymýtit spousta zlozvyků jako používat stejné operátory na různé účely. A i tak by programátoři byli kolikrát překvapeni, co jejich program vlastně dělá. Python pracuje nad objekty a z objektů samotných zjišťuje, jak se mají dané operace provést. Na rychlé výpočty je mnohem lepší C, které se případně z Pythonu zavolá. Na druhou stranu na první pokusy a proof of concept implementace je Python ideální už díky podpoře velkých čísel.
a také téměř určitě implementace nevyužívá identitya^fi(n) % n = 1kdefi(n)je Eulerova funkce přirozeného číslan.
Vezmu-li v úvahu, že φ(997) = 996 > 249, tak v tom zase tak zásadní problém nevidím. Nemluvě o tom, že pokud exponent není opravdu výrazně větší než n, bude samotný výpočet φ(n) (časová náročnost obecně odmocnina z n) trvat déle než prostě tu mocninu spočítat v příslušném ℤ/ℤ[n] (časová náročnost logaritmická vzhledem k exponentu).
Tiskni
Sdílej: