Spolek OpenAlt zve příznivce otevřených řešení a přístupu na 209. brněnský sraz, který proběhne tento pátek 16. května od 18:00 ve studentském klubu U Kachničky na Fakultě informačních technologií Vysokého učení technického na adrese Božetěchova 2/1. Jelikož se Brno stalo jedním z hlavních míst, kde se vyvíjí open source knihovna OpenSSL, tentokrát se OpenAlt komunita potká s komunitou OpenSSL. V rámci srazu Anton Arapov z OpenSSL
… více »GNOME Foundation má nového výkonného ředitele. Po deseti měsících skončil dočasný výkonný ředitel Richard Littauer. Vedení nadace převzal Steven Deobald.
Byl publikován přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie) za uplynulé dva měsíce. Servo zvládne už i Gmail. Zakázány jsou příspěvky generované pomocí AI.
Raspberry Pi Connect, tj. oficiální služba Raspberry Pi pro vzdálený přístup k jednodeskovým počítačům Raspberry Pi z webového prohlížeče, byla vydána v nové verzi 2.5. Nejedná se už o beta verzi.
Google zveřejnil seznam 1272 projektů (vývojářů) od 185 organizací přijatých do letošního, již jednadvacátého, Google Summer of Code. Plánovaným vylepšením v grafických a multimediálních aplikacích se věnuje článek na Libre Arts.
Byla vydána (𝕏) dubnová aktualizace aneb nová verze 1.100 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.100 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Open source platforma Home Assistant (Demo, GitHub, Wikipedie) pro monitorování a řízení inteligentní domácnosti byla vydána v nové verzi 2025.5.
OpenSearch (Wikipedie) byl vydán ve verzi 3.0. Podrobnosti v poznámkách k vydání. Jedná se o fork projektů Elasticsearch a Kibana.
PyXL je koncept procesora, ktorý dokáže priamo spúštat Python kód bez nutnosti prekladu ci Micropythonu. Podľa testov autora je pri 100 MHz približne 30x rýchlejší pri riadeni GPIO nez Micropython na Pyboard taktovanej na 168 MHz.
Grafana (Wikipedie), tj. open source nástroj pro vizualizaci různých metrik a s ní související dotazování, upozorňování a lepší porozumění, byla vydána ve verzi 12.0. Přehled novinek v aktualizované dokumentaci.
$a = bcpowmod(2, 249, 997); echo $a."\n";Spravny vysledek 161. V pythonu s tim samym neni zadny problem:
print 2**249 % 997Vysledek opet spravne a uz asi chapete kam mirim. Kod v C:
long long x = ((long long)pow(a, d)) % n; printf("x=%lld\n",x);No a asi neprekvapi, ze dojde k preteceni zobrazi se zaporny vysledek. Moje otazka je, jak toto vyresit. Vim, ze existuji knihovny pro praci s velkymi cisli (libgmp), ale tem bych se hrozne rad vyhnul. Je nejaka moznost jak toho vyresit standardnimi prostredky C/C++?
Řešení dotazu:
print 2**249 % 997Otázka je jestli to počítá tak jak bys chtěl (kvůli rychlosti apod).
a^fi(n) % n = 1kde
fi(n)
je Eulerova funkce přirozeného čísla n
. A díky prioritě operací (mocnina je prioritnější než modulo, dělení a násobení) také patrně nevyužívá identity (a*b)%n = ((a%n)*(b%n))%nkterá umožňuje počítat modulo pro mnohem menší čísla než nejdříve pronásobit a pak dělit.
V 99,99% špatně, tedy pomalu a neoptimálně. Pochybuji, že by algoritmus do normálního vzorce měl aplikovánu čínskou větu o zbytcích a také téměř určitě implementace nevyužívá identityPython prakticky neoptimalizuje. Alespoň v současných verzích. Ale problém je v tom, že i kdybys chtěl takovýto výraz optimalizovat, tak by se musela vymýtit spousta zlozvyků jako používat stejné operátory na různé účely. A i tak by programátoři byli kolikrát překvapeni, co jejich program vlastně dělá. Python pracuje nad objekty a z objektů samotných zjišťuje, jak se mají dané operace provést. Na rychlé výpočty je mnohem lepší C, které se případně z Pythonu zavolá. Na druhou stranu na první pokusy a proof of concept implementace je Python ideální už díky podpoře velkých čísel.
a také téměř určitě implementace nevyužívá identitya^fi(n) % n = 1kdefi(n)
je Eulerova funkce přirozeného číslan
.
Vezmu-li v úvahu, že φ(997) = 996 > 249, tak v tom zase tak zásadní problém nevidím. Nemluvě o tom, že pokud exponent není opravdu výrazně větší než n, bude samotný výpočet φ(n) (časová náročnost obecně odmocnina z n) trvat déle než prostě tu mocninu spočítat v příslušném ℤ/ℤ[n] (časová náročnost logaritmická vzhledem k exponentu).
Tiskni
Sdílej: