Byl vydán Mozilla Firefox 143.0. Přehled novinek v poznámkách k vydání a poznámkách k vydání pro vývojáře. Nově se Firefox při ukončování anonymního režimu zeptá, zda chcete smazat stažené soubory. Dialog pro povolení přístupu ke kameře zobrazuje náhled. Obzvláště užitečné při přepínání mezi více kamerami. Řešeny jsou rovněž bezpečnostní chyby. Nový Firefox 143 bude brzy k dispozici také na Flathubu a Snapcraftu.
Byla vydána betaverze Fedora Linuxu 43 (ChangeSet), tj. poslední zastávka před vydáním finální verze, která je naplánována na úterý 21. října.
Multiplatformní emulátor terminálu Ghostty byl vydán ve verzi 1.2 (𝕏, Mastodon). Přehled novinek, vylepšení a nových efektů v poznámkách k vydání.
Byla vydána nová verze 4.5 (𝕏, Bluesky, Mastodon) multiplatformního open source herního enginu Godot (Wikipedie, GitHub). Přehled novinek i s náhledy v příspěvku na blogu.
Byla vydána verze 3.0 (Mastodon) nástroje pro záznam a sdílení terminálových sezení asciinema (GitHub). S novou verzí formátu záznamu asciicast v3, podporou live streamingu a především kompletním přepisem z Pythonu do Rustu.
Canonical oznámil, že bude podporovat a distribuovat toolkit NVIDIA CUDA (Wikipedie) v Ubuntu.
Tržní hodnota americké společnosti Alphabet, která je majitelem internetového vyhledávače Google, dnes poprvé překonala hranici tří bilionů dolarů (62,1 bilionu Kč). Alphabet se připojil k malé skupině společností, které tuto hranici pokořily. Jsou mezi nimi zatím americké firmy Nvidia, Microsoft a Apple.
Spojené státy a Čína dosáhly dohody ohledně pokračování populární čínské platformy pro sdílení krátkých videí TikTok v USA. V příspěvku na síti Truth Social to dnes naznačil americký prezident Donald Trump. Dosažení rámcové dohody o TikToku vzápětí oznámil americký ministr financí Scott Bessent, který v Madridu jedná s čínskými představiteli o vzájemných obchodních vztazích mezi USA a Čínou. Bessentova slova později potvrdila také čínská strana.
MKVToolNix, tj. sada nástrojů pro práci s formátem (medialnym kontajnerom) Matroska, byl vydán ve verzi 95.0. Podpora přehrávání formátu Matroska míří do Firefoxu [Bug 1422891, Technický popis]. Přehrávání lze již testovat ve Firefoxu Nightly.
Spolek OpenAlt zve příznivce otevřených řešení a přístupu na 211. sraz, který proběhne v pátek 19. září od 18:00 ve Studentském klubu U Kachničky na Fakultě informačních technologií Vysokého učení technického na adrese Božetěchova 2/1. Na srazu proběhne přednáška Jiřího Eischmanna o nové verzi prostředí GNOME 49. Nemáte-li možnost se zúčastnit osobně, přednáškový blok bude opět streamován živě na server VHSky.cz a následně i zpřístupněn záznam.
$a = bcpowmod(2, 249, 997); echo $a."\n";Spravny vysledek 161. V pythonu s tim samym neni zadny problem:
print 2**249 % 997Vysledek opet spravne a uz asi chapete kam mirim. Kod v C:
long long x = ((long long)pow(a, d)) % n; printf("x=%lld\n",x);No a asi neprekvapi, ze dojde k preteceni zobrazi se zaporny vysledek. Moje otazka je, jak toto vyresit. Vim, ze existuji knihovny pro praci s velkymi cisli (libgmp), ale tem bych se hrozne rad vyhnul. Je nejaka moznost jak toho vyresit standardnimi prostredky C/C++?
Řešení dotazu:
print 2**249 % 997Otázka je jestli to počítá tak jak bys chtěl (kvůli rychlosti apod).
a^fi(n) % n = 1kde
fi(n)
je Eulerova funkce přirozeného čísla n
. A díky prioritě operací (mocnina je prioritnější než modulo, dělení a násobení) také patrně nevyužívá identity (a*b)%n = ((a%n)*(b%n))%nkterá umožňuje počítat modulo pro mnohem menší čísla než nejdříve pronásobit a pak dělit.
V 99,99% špatně, tedy pomalu a neoptimálně. Pochybuji, že by algoritmus do normálního vzorce měl aplikovánu čínskou větu o zbytcích a také téměř určitě implementace nevyužívá identityPython prakticky neoptimalizuje. Alespoň v současných verzích. Ale problém je v tom, že i kdybys chtěl takovýto výraz optimalizovat, tak by se musela vymýtit spousta zlozvyků jako používat stejné operátory na různé účely. A i tak by programátoři byli kolikrát překvapeni, co jejich program vlastně dělá. Python pracuje nad objekty a z objektů samotných zjišťuje, jak se mají dané operace provést. Na rychlé výpočty je mnohem lepší C, které se případně z Pythonu zavolá. Na druhou stranu na první pokusy a proof of concept implementace je Python ideální už díky podpoře velkých čísel.
a také téměř určitě implementace nevyužívá identitya^fi(n) % n = 1kdefi(n)
je Eulerova funkce přirozeného číslan
.
Vezmu-li v úvahu, že φ(997) = 996 > 249, tak v tom zase tak zásadní problém nevidím. Nemluvě o tom, že pokud exponent není opravdu výrazně větší než n, bude samotný výpočet φ(n) (časová náročnost obecně odmocnina z n) trvat déle než prostě tu mocninu spočítat v příslušném ℤ/ℤ[n] (časová náročnost logaritmická vzhledem k exponentu).
Tiskni
Sdílej: