Canonical vydal (email) Ubuntu 25.10 Questing Quokka. Přehled novinek v poznámkách k vydání. Jedná se o průběžné vydání s podporou 9 měsíců, tj. do července 2026.
ClamAV (Wikipedie), tj. multiplatformní antivirový engine s otevřeným zdrojovým kódem pro detekci trojských koní, virů, malwaru a dalších škodlivých hrozeb, byl vydán ve verzi 1.5.0.
Byla vydána nová verze 1.12.0 dynamického programovacího jazyka Julia (Wikipedie) určeného zejména pro vědecké výpočty. Přehled novinek v příspěvku na blogu a v poznámkách k vydání. Aktualizována byla také dokumentace.
V Redisu byla nalezena a v upstreamu již opravena kritická zranitelnost CVE-2025-49844 s CVSS 10.0 (RCE, vzdálené spouštění kódu).
Ministr a vicepremiér pro digitalizaci Marian Jurečka dnes oznámil, že přijme rezignaci ředitele Digitální a informační agentury Martina Mesršmída, a to k 23. říjnu 2025. Mesršmíd nabídl svou funkci během minulého víkendu, kdy se DIA potýkala s problémy eDokladů, které některým občanům znepříjemnily využití možnosti prokázat se digitální občankou u volebních komisí při volbách do Poslanecké sněmovny.
Společnost Meta představila OpenZL. Jedná se o open source framework pro kompresi dat s ohledem na jejich formát. Zdrojové kódy jsou k dispozici na GitHubu.
Google postupně zpřístupňuje českým uživatelům Režim AI (AI Mode), tj. nový režim vyhledávání založený na umělé inteligenci. Režim AI nabízí pokročilé uvažování, multimodalitu a možnost prozkoumat jakékoliv téma do hloubky pomocí dodatečných dotazů a užitečných odkazů na weby.
Programovací jazyk Python byl vydán v nové major verzi 3.14.0. Podrobný přehled novinek v aktualizované dokumentaci.
Bylo oznámeno, že Qualcomm kupuje Arduino. Současně byla představena nová deska Arduino UNO Q se dvěma čipy: MPU Qualcomm Dragonwing QRB2210, na kterém může běžet Linux, a MCU STM32U585 a vývojové prostředí Arduino App Lab.
Multiplatformní open source voxelový herní engine Luanti byl vydán ve verzi 5.14.0. Podrobný přehled novinek v changelogu. Původně se jedná o Minecraftem inspirovaný Minetest v říjnu loňského roku přejmenovaný na Luanti.
Ale nic co jsem zkousel takova cisla nezvladalo, potrebuji aby ten algoritmus byl rozumne rychly, abych na vysledek nemusel cekat hodinu.Hodinu? Řekl bych, že kdybys zvládl faktorizaci za hodinu, byl bys king.
\exp\left( \left(\sqrt[3]{\frac{64}{9}} + o(1)\right)(\log n)^{\frac{1}{3}}(\log \log n)^{\frac{2}{3}}\right) =L_n\left[\frac{1}{3},\sqrt[3]{\frac{64}{9}}\right]
(v TeXovém zápisu) nebo převedeno jako obrázek a jinak zdroj je WolframMathWorld Je tam trochu více logaritmů.
256 bits is a little over 80 digits. Msieve can do factorizations that size in about 20-25 minutesA čo je msieve? Projekt na sourceforge
Msieve is a C library implementing a suite of algorithms to factor large integers. It contains an implementation of the SIQS and GNFS algorithms
make x86_64
⋮
ar r libmsieve.a common/filter/clique.o common/filter/filter.o common/filter/merge.o common/filter/merge_post.o common/filter/merge_pre.o common/filter/merge_util.o common/filter/singleton.o common/lanczos/lanczos.o common/lanczos/lanczos_io.o common/lanczos/lanczos_matmul0.o common/lanczos/lanczos_matmul1.o common/lanczos/lanczos_matmul2.o common/lanczos/lanczos_pre.o common/lanczos/lanczos_vv.o common/lanczos/matmul_util.o common/smallfact/gmp_ecm.o common/smallfact/smallfact.o common/smallfact/squfof.o common/smallfact/tinyqs.o common/batch_factor.o common/cuda_xface.o common/dickman.o common/driver.o common/expr_eval.o common/hashtable.o common/integrate.o common/minimize.o common/minimize_global.o common/mp.o common/polyroot.o common/prime_delta.o common/prime_sieve.o common/savefile.o common/strtoll.o common/util.o mpqs/gf2.qo mpqs/mpqs.qo mpqs/poly.qo mpqs/relation.qo mpqs/sieve.qo mpqs/sqrt.qo \
mpqs/sieve_core_generic_32k.qo mpqs/sieve_core_generic_64k.qo mpqs/sieve_core_p4_64_64k.qo mpqs/sieve_core_core_64_32k.qo mpqs/sieve_core_k8_64_64k.qo \
gnfs/poly/poly.no gnfs/poly/poly_skew.no gnfs/poly/polyutil.no gnfs/poly/root_score.no gnfs/poly/size_score.no gnfs/poly/stage1/stage1.no gnfs/poly/stage1/stage1_roots.no gnfs/poly/stage2/optimize.no gnfs/poly/stage2/optimize_deg6.no gnfs/poly/stage2/root_sieve.no gnfs/poly/stage2/root_sieve_deg45_x.no gnfs/poly/stage2/root_sieve_deg5_xy.no gnfs/poly/stage2/root_sieve_deg6_x.no gnfs/poly/stage2/root_sieve_deg6_xy.no gnfs/poly/stage2/root_sieve_deg6_xyz.no gnfs/poly/stage2/root_sieve_line.no gnfs/poly/stage2/root_sieve_util.no gnfs/poly/stage2/stage2.no gnfs/filter/duplicate.no gnfs/filter/filter.no gnfs/filter/singleton.no gnfs/sieve/sieve_line.no gnfs/sieve/sieve_util.no gnfs/sqrt/sqrt.no gnfs/sqrt/sqrt_a.no gnfs/fb.no gnfs/ffpoly.no gnfs/gf2.no gnfs/gnfs.no gnfs/relation.no gnfs/poly/stage1/stage1_sieve_cpu.no gnfs/poly/stage1/stage1_sieve_cpu.no
ranlib libmsieve.a
⋮
Takze po buildu z toho vyleze staticka knihonva libmsieve.a
, kterou staci prilinkovat (se spravne nastavenymi cestami k hlavickovym souborum). Viz napriklad build toho dema:
gcc -D_FILE_OFFSET_BITS=64 -O3 -fomit-frame-pointer -march=k8 -DNDEBUG -D_LARGEFILE64_SOURCE -Wall -W -DMSIEVE_SVN_VERSION="\"exported\"" -I. -Iinclude -Ignfs -Ignfs/poly -Ignfs/poly/stage1 demo.c -o msieve \
libmsieve.a -lz -lgmp -lm -lpthread
Using Msieve
------------
Just to be confusing, there are two things that I call 'Msieve' interchangeably.
The source distribution builds a self-contained static library 'libmsieve.a',
that actually performs factorizations, and also builds a 'msieve' demo
application that uses the library. The library has a very lightweight inter-
face defined in msieve.h, and can be used in other applications. While the
demo application is (slightly) multithreaded, most the library is single-
threaded and all of its state is passed in. The linear algebra code used
in the quadratic- and number field sieve is multithread aware, and the
entire library is supposed to be multithread-safe.
Takze bych to videl, ze je asi nejlepsi se podivat na demo.c
a inspirovat se (se 600 radky kodu by to nemusel byt problem).
Tiskni
Sdílej: