Kevin Lin zkouší využívat chytré brýle Mentra při hraní na piano. Vytváří aplikaci AugmentedChords, pomocí které si do brýlí posílá notový zápis (YouTube). Uvnitř brýlí běží AugmentOS (GitHub), tj. open source operační systém pro chytré brýle.
Jarní konference EurOpen.cz 2025 proběhne 26. až 28. května v Brandýse nad Labem. Věnována je programovacím jazykům, vývoji softwaru a programovacím technikám.
Na čem aktuálně pracují vývojáři GNOME a KDE Plasma? Pravidelný přehled novinek v Týden v GNOME a Týden v KDE Plasma.
Před 25 lety zaplavil celý svět virus ILOVEYOU. Virus se šířil e-mailem, jenž nesl přílohu s názvem I Love You. Příjemci, zvědavému, kdo se do něj zamiloval, pak program spuštěný otevřením přílohy načetl z adresáře e-mailové adresy a na ně pak „milostný vzkaz“ poslal dál. Škody vznikaly jak zahlcením e-mailových serverů, tak i druhou činností viru, kterou bylo přemazání souborů uložených v napadeném počítači.
Byla vydána nová major verze 5.0.0 svobodného multiplatformního nástroje BleachBit (GitHub, Wikipedie) určeného především k efektivnímu čištění disku od nepotřebných souborů.
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za duben (YouTube).
Provozovatel čínské sociální sítě TikTok dostal v Evropské unii pokutu 530 milionů eur (13,2 miliardy Kč) za nedostatky při ochraně osobních údajů. Ve svém oznámení to dnes uvedla irská Komise pro ochranu údajů (DPC), která jedná jménem EU. Zároveň TikToku nařídila, že pokud správu dat neuvede do šesti měsíců do souladu s požadavky, musí přestat posílat data o unijních uživatelích do Číny. TikTok uvedl, že se proti rozhodnutí odvolá.
Společnost JetBrains uvolnila Mellum, tj. svůj velký jazykový model (LLM) pro vývojáře, jako open source. Mellum podporuje programovací jazyky Java, Kotlin, Python, Go, PHP, C, C++, C#, JavaScript, TypeScript, CSS, HTML, Rust a Ruby.
Vývojáři Kali Linuxu upozorňují na nový klíč pro podepisování balíčků. K původnímu klíči ztratili přístup.
V březnu loňského roku přestal být Redis svobodný. Společnost Redis Labs jej přelicencovala z licence BSD na nesvobodné licence Redis Source Available License (RSALv2) a Server Side Public License (SSPLv1). Hned o pár dní později vznikly svobodné forky Redisu s názvy Valkey a Redict. Dnes bylo oznámeno, že Redis je opět svobodný. S nejnovější verzí 8 je k dispozici také pod licencí AGPLv3.
if [ a + [ b - 1 ] < c ]; then if [[ a + [[ b - 1 ]] < c ]]; then if (( a + (( b - 1 )) < c )); then if (( a + $( b - 1 ) < c )); then
Řešení dotazu:
..je na místě zvolit jiný jazyk.Díky, jiný jazyk? On existuje i jiný jazyk pro práci s linuxem?
apt install python3.5 Reading package lists... Done Building dependency tree Reading state information... Done python3.5 is already the newest version (3.5.3-1). 0 upgraded, 0 newly installed, 0 to remove and 3 not upgraded. python -V Python 2.7.13Díval jsem se do /etc a jsou tam složky
python python2.7 python3 python3.5ale všechny jsou prázdné (v každé je jeden soubor). Kde ty soubory jsou? Díky
python3.5 is already the newest version (3.5.3-1).
Již jej máš instalovaný, python je na většině běžných distribucí v základu.
V /etc jsou system-wide konfigurace, vlastní software je rozmístěný v odpovídajících adresářích.
Opravdu je potřeba si nejdříve o linuxu něco trošku přečíst.
python3 -V
Jejda Python trošičku znám, ale myslel jsem, že je pro Windows.
Podivná pověra. Žádný kloudný programovací jazyk není "pro Windows" a nevznikl na Windows. (Příznivci C# teď nabíjejí kulomety, ale co už.) Moderní programování jako takové vzniklo na systémech UNIXového typu (s jazyky jako C, C++ nebo Java). Windows jsou prostředí nepřátelské k programování i ke studiu informačních technologií obecně.
ale všechny jsou prázdné (v každé je jeden soubor). Kde ty soubory jsou? Díky
Bohužel neuvádíš, o jakou distribuci se jedná. Předpokládám, že o nějakou založenou na dpkg
a spol. Takže:
which python whereis python dpkg -l | awk '$2 ~ /python/ {print}' dpkg -L python dpkg -L python-minimal
Detaily, co ty příkazy vypisují, jsou v manuálových stránkách.
Právě to rozepsání do více příkazů způsobí zoufalou nečitelnost skriptu.
Rozhodně je na místě přečíst si pořádně manuálovou stránku Bashe. Je sice dlouhá a spletitá, ale v drtivé většině skriptů, které vidím, se setkávám s naprostým nepochopením, jak fungují v Bashi datové typy, substituce, pole, asociativní pole, aritmetika a cykly. Někteří autoři skriptů na čtení manuálové stránky rezignovali a kvůli zdánlivě netriviálním trivialitám spouštějí (klidně v cyklech) procesy jako awk
nebo sed
. Pak jsou skripty pomalé. Manipulace s proměnnými v čistém Bashi, při které se nespouští externí procesy, většinou na zpracování textových dat do stovek MB velikosti zcela postačuje, pokud jde o "efektivitu".
Silnou stránkou Bashe je například jednoduchý multiprocesing, který se dá ve spoustě případů použít pro paralelní zpracování dat, třeba nad výstupem z příkazu find
. Přesně tam se podmínky a cykly hodí víc než dobře:
set -e declare -ri TASKS_TO_RUN=128 declare -ri TASKS_LIMIT=16 declare -i tasks=0 run() { local -r task_name="$1"; shift if ((tasks > TASKS_LIMIT)); then wait -n; else ((++tasks)); fi ( "$@"; echo "${task_name} done."; )& } wait_for_completion() { while ((tasks--)); do wait -n; done; } for ((i = 0; i < TASKS_TO_RUN; ++i)); do run "Task ${i}" sleep ".$((100 * RANDOM / 32768))" done wait_for_completion
wait_for_completion
, když by měl stačit vestavěný příkaz wait
?
Používání globálních proměnných je fakt hnus.
Jsem jedno ucho, jak se v Bashi v tomhle konkrétním případě zbavíš globálních proměnných. Tak prosím, příklady jsou vítané. A pokud možno aby nebyly hnus.
Mimochodem, globální konstanty rozhodně nejsou hnus a globální počítadla taky ne — to jenom připomínám pro úplnost.
Asi si umíš představit, že wait_for_completion
by mohl mít (v původní, složitější verzi takového skriptu) za úkol třeba vypisovat údaje o počtu zbývajících procesů, že ano.
find
, zbavíš se konstanty TASKS_TO_RUN
a budeš to mít v podobě, kterou používám:
#!/bin/bash set -e declare -ri TASKS_TO_RUN=12 declare -ri TASKS_LIMIT=4 for ((i = 0; i < TASKS_TO_RUN; ++i)); do echo -ne "./subproces.sh Task_${i} sleep .$((100 * RANDOM / 32768)) \00" done | xargs -0 -n 1 -P $TASKS_LIMIT bash -cSoubor
subproces.sh
zpravidla není skript, ale konkrétní program, který data ze souboru zpracuje. Tohle je jen pro ilustraci:
#!/bin/bash set -e declare -r task_name="$1" shift "$@" echo "${task_name} done."Jak vidíš, žádnou globální proměnnou jsem nepoužil. Data předávám pouze přes roury a parametry.
To nakonec skvěle ilustruje, do jaké míry je ten „hnus“ spíš věcí názoru. Řešení s
xargs
je svým způsobem pěkné, ale nehodí se třeba pro (zmíněné) hlášení počtu zbývajících procesů nebo pro (méně triviální) přesměrování standardního vstupu i výstupu z těch procesů, což můžou být pojmenované roury (mkfifo
), soubory atd. Samozřejmě to taky jde — s použitím toho odděleného skriptu, který to zařídí —, ale pak se nabízí znova otázka, co je „hnus“ a co až tolik ne.
Problém s globální proměnnou je vlastně spíš slovíčkaření, protože přesměrování celého výstupu do xargs
je v mnoha směrech horší než globální proměnná. Přístup s run
a wait_for_completion
umožňuje skriptu normálně používat stdout
i stderr
, paralelně dělat i jiné úkony než generování argumentů pro xargs
(ptát se uživatele v terminálu, jestli chce spustit i tyhle další procesy nebo třeba ještě ne), tu a tam spustit něco na pozadí pomocí run
a pak na to třeba počkat, když je nutná synchronizace mezi nějakými fázemi toho výpočtu.
Řešení s xargs
bude vždycky tomu shellu blokovat některý ze standardních výstupů. Může sice číst z pojmenované roury, ale do té roury se pak musí přesměrovat celý blok (for
, while
apod.), protože přesměrovat tam třeba něco jen tak z echo
znamená, že se ta roura hned zavře a xargs
už ji dál číst nebude. To není moc flexibilní. Můžu jistě celý vstup pro xargs
vygenerovat předem do pole řádků nebo jiné struktury, ale to jsme zase u toho hnusu.
Mimochodem, právě různá řešení s xargs
jsem ve spoustě skriptů nahradil jednoduchými subshelly, protože xargs
není dost flexibilní pro účely, ke kterým ty skripty byly.
Další killer feature ampersandu je, že po každém &
se dá přečíst $!
. Něco takového xargs
taky neumí. Tedy lze mít například pole s PID všech spuštěných procesů na pozadí a lze čekat (pomocí wait
) na každý z nich zvlášť a získat a zpracovat jeho návratovou hodnotu.
Pro ilustraci těch výsledků procesů na pozadí:
background_pids=() exit_codes=() # ... run_something & background_pids[${#background_pids[@]}]="$!" run_something_else & background_pids[${#background_pids[@]}]="$!" # ... for idx in "${!background_pids[@]}"; do wait "${background_pids[idx]}" exit_codes[idx]="$?" done # ...
Tohle^^^ xargs
sice možná dá taky, ale způsobem příliš obskurním.
if (( a + ( b - 1 ) < c )); thennebo takto
if (( a + $(( b - 1 )) < c )); thenale když chci výsledek do proměnné tak takto?
VAR=$( a + b )
VAR=$(( a + b ))
Tohle přece můžeš snadno zkusit. První, druhý a čtvrtý příklad hodí syntaktickou chybu, takže to asi nebude ono.
Třetí příklad je v podstatě OK, jen není důvod mít tam dvojité závorky, když už jsi v aritmetickém výrazu.
a=3 b=4 c=6 if (( a + (b - 1) < c )); then echo jo; else echo ne; fi
Bash umí taky (trochu) specifikovat datové typy (integer, indexované pole, asociativní pole) a typ integer umí jednodušší syntaxi přiřazení (bez $(())
), jako například proměnná e2
níže.
declare -i e2 e1='a + (b - 1)' e2='a + (b - 1)' e3=$((a + (b - 1))) echo "$e1" # a + (b - 1) echo "$e2" # 6 echo "$e3" # 6
Podmínky a výrazy se samozřejmě dají použít taky ve for-cyklu.
c=20 for ((a = 1, b = 10; a + (b - 1) < c; a += 2, ++b)); do echo "a: ${a} b: ${b} c: ${c} a + (b - 1): $((a + (b - 1)))" done
Nebo v jiných cyklech.
a=1 b=10 c=20 while ((a + (b - 1) < c)); do echo "a: ${a} b: ${b} c: ${c} a + (b - 1): $((a + (b - 1)))" ((a += 2)) ((++b)) done
Tiskni
Sdílej: