Byla vydána (𝕏) zářijová aktualizace aneb nová verze 1.105 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.105 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Ve Firefoxu bude lepší správa profilů (oddělené nastavení domovské stránky, nastavení lišt, instalace rozšíření, uložení hesla, přidání záložky atd.). Nový grafický správce profilů bude postupně zaváděn od 14.října.
Canonical vydal (email) Ubuntu 25.10 Questing Quokka. Přehled novinek v poznámkách k vydání. Jedná se o průběžné vydání s podporou 9 měsíců, tj. do července 2026.
ClamAV (Wikipedie), tj. multiplatformní antivirový engine s otevřeným zdrojovým kódem pro detekci trojských koní, virů, malwaru a dalších škodlivých hrozeb, byl vydán ve verzi 1.5.0.
Byla vydána nová verze 1.12.0 dynamického programovacího jazyka Julia (Wikipedie) určeného zejména pro vědecké výpočty. Přehled novinek v příspěvku na blogu a v poznámkách k vydání. Aktualizována byla také dokumentace.
V Redisu byla nalezena a v upstreamu již opravena kritická zranitelnost CVE-2025-49844 s CVSS 10.0 (RCE, vzdálené spouštění kódu).
Ministr a vicepremiér pro digitalizaci Marian Jurečka dnes oznámil, že přijme rezignaci ředitele Digitální a informační agentury Martina Mesršmída, a to k 23. říjnu 2025. Mesršmíd nabídl svou funkci během minulého víkendu, kdy se DIA potýkala s problémy eDokladů, které některým občanům znepříjemnily využití možnosti prokázat se digitální občankou u volebních komisí při volbách do Poslanecké sněmovny.
Společnost Meta představila OpenZL. Jedná se o open source framework pro kompresi dat s ohledem na jejich formát. Zdrojové kódy jsou k dispozici na GitHubu.
Google postupně zpřístupňuje českým uživatelům Režim AI (AI Mode), tj. nový režim vyhledávání založený na umělé inteligenci. Režim AI nabízí pokročilé uvažování, multimodalitu a možnost prozkoumat jakékoliv téma do hloubky pomocí dodatečných dotazů a užitečných odkazů na weby.
Programovací jazyk Python byl vydán v nové major verzi 3.14.0. Podrobný přehled novinek v aktualizované dokumentaci.
#include <type_traits> template<class T> struct is_basic_string : std::false_type{}; template<class Ch, class Tr, class Al> struct is_basic_string<std::basic_string<Ch, Tr, Al>> : std::true_type{};Mám takúto šablónu, ktorá konvertuje nejaký kontainer znakov na stringy:
template<typename T = std::string> T toString(const binaries& bins) { static_assert(is_basic_string<T>::value, __FUNCTION__ "<T>: The parameter T can only be derived from std::basic_string"); return T(bins.begin(), bins.end()); }prvý riadok tela funkcie je kontrola či má parameter srpávny typ (či je odvodený od basic_string, inak povedané či je parameter jeden zo stringových typov). V opačnom prípade prekladač vyhodí chybu. Chybová hláška obsahuje makro __FUNCTION__ zobrazujúce názov aktálnej funkcie. Mno, ale keďže ten prvý riadok, ktorý kontroluje typ string sa mi bude hodiť aj inde (všade kde potrebujem overiť či template parameter je string) rozhodol som sa že z neho urobím tiež trait. Takže upravený kód vyuzerá takto:
template<typename T> struct ensure_is_basic_string { static_assert(is_basic_string<T>::value, "<T>: The parameter T can only be derived from std::basic_string"); }; template<typename T = std::string> static T toString(const binaries& bins) { ensure_is_basic_string<T>; return T(bins.begin(), bins.end()); }Asi ste si všimli, že mi tam chýba makro __FUNCTION__ vracajúce názov aktuálnej funkcie, keďže sme kód premiestnili do traitu. Otázka je akým spôsobom tam mám vložiť názov aktuálnej funkcie? Pridať stringový parameter?
Řešení dotazu:
typedef std::vector<unsigned char> binaries; typedef std::vector<wchar_t> wbinaries;a k tomu mám template:
template<typename T> static std::vector<T> toQuoted(const std::vector<T>& v) { //nejaký kód return bins; }Tento template podporuje hociaký vector. Lenže ja by som rád typy na vstupe obmedzil len na 2 typy a to binaries a wbinaries. Neskôr možno pridám aj ďaľšie. Napadlo ma testovať to zatiaľ takto:
template<typename T> static std::vector<T> toQuoted(const std::vector<T>& v) { static_assert(std::is_same_v(T, unsigned char) || std::is_same_v(T, wchar_t), __FUNCTION__ ": The parameter was expected to have type binaries or wbinaries"); ... return bins; }Lenže to sa mi vôbec nepáči, lebo ja už mám hotové makro, ktoré netestuje parameter vektoru, ale priamo celý typový alias aj s parametrom.
#define requires_binaries(T) \ static_assert(std::is_same_v(T, binaries) || std::is_same_v(T, wbinaries), __FUNCTION__ ": The parameter was expected to have type binaries or wbinaries");A použiť som ho chcel takto:
template<typename T> static std::vector<T> toQuoted(const std::vector<T>& v) { requires_binaries(std::vector<T>) ... return bins; }Akurát std::is_same_v si s vektorom neporadí a akceptuje len std::is_same_v<T, binaries> ale už nie std::is_same_v<std::vector<T>, binaries> Prekladač: 'std::is_same_v': use of a variable template requires template argument list Nepoznáte spôsob ako odtestovať "celý" typ aj s generickým parametrom?
#include <list> #include <vector> template <typename T> struct assert_vector_type { template <typename V> static const bool value = std::is_same<V, void>::value; }; template <typename T, typename U> struct assert_vector_type<std::vector<T, U>> { template <typename V> static const bool value = std::is_same<T, V>::value; }; #define assert_is_binaries(v) \ static_assert(assert_vector_type<std::decay_t<decltype(v)>>::template value<wchar_t> || \ assert_vector_type<std::decay_t<decltype(v)>>::template value<unsigned char>, \ "Type mismatch"); template <template <typename...> class T, typename ...Args> T<Args...> toQuoted(const T<Args...>& v) { assert_is_binaries(v); return T<Args...>(); } int main() { std::list<unsigned char> l; std::vector<int> a; std::vector<unsigned char> b; std::vector<wchar_t> c; //toQuoted(a); toQuoted(b); toQuoted(c); //toQuoted(l); return 0; }ale je to dost ujeté a prakticky by to tak nejspíš nikdo nedělal.
//nahrada za std::u8string ktorá môže obsahovať všetky znaky (vrátane '\0') typedef std::vector<char8_t> u8binaries;Tak by som musel robiť 20x copy paste pre wbinaries a 20x pre u8binaries. Ja sa snažím minimalizovať kopírovanie rovnakého kódu (v prípade že to má zmysel). A ten Váš príklad idem vyskúšať, ďakujem Vám :)
template <typename T> std::vector<T> f(const std::vector<T> &v) { static_assert(std::is_same_v<T, char> || std::is_same_v<T, wchar_t>, "Type mismatch"); return ret; }je kontrola na celý
std::vector<T>
zbytečná, protože nic jiného než std::vector
tam stejně nepředáš. Pokud máš funkci, která dostává a vrací ten samý kontejner, zvážil bych použití std::transform
.
std::vector<T>
, proč je potřeba testovat, že předaný parametr je typu std::vector<T>
, když do té funkce nic jiného předat nelze? Test na parametr T
je naprosto dostačující a funkční.
template< typename CH, typename TRAITS, typename ALLOC> void moje_funkce(std::basic_string< CH, TRAITS, ALLOC>& prm) { }Nebo případně:
template< typename ARGS...> void moje_funkce(std::basic_string< ARGS...>& prm) { }
Tiskni
Sdílej: