Fedora je od 10. února dostupná v Sýrii. Sýrie vypadla ze seznamu embargovaných zemí a Fedora Infrastructure Team mohl odblokovat syrské IP adresy.
Ministerstvo zahraničí Spojených států amerických vyvíjí online portál Freedom.gov, který umožní nejenom uživatelům v Evropě přístup k obsahu blokovanému jejich vládami. Portál bude patrně obsahovat VPN funkci maskující uživatelský provoz tak, aby se jevil jako pocházející z USA. Projekt měl být původně představen již na letošní Mnichovské bezpečnostní konferenci, ale jeho spuštění bylo odloženo.
Byla vydána pro lidi zdarma ke stažení kniha The Book of Remind věnovaná sofistikovanému kalendáři a připomínači Remind.
Grafický editor dokumentů LyX, založený na TeXu, byl vydán ve verzi 2.5.0. Oznámení připomíná 30. výročí vzniku projektu. Novinky zahrnují mj. vylepšení referencí nebo použití barev napříč aplikací, od rozhraní editoru po výstupní dokument.
F-Droid bannerem na svých stránkách a také v aplikacích F-Droid a F-Droid Basic upozorňuje na iniciativu Keep Android Open. Od září 2026 bude Android vyžadovat, aby všechny aplikace byly registrovány ověřenými vývojáři, aby mohly být nainstalovány na certifikovaných zařízeních Android. To ohrožuje alternativní obchody s aplikacemi jako F-Droid a možnost instalace aplikací mimo oficiální obchod (sideloading).
Svobodná historická realtimová strategie 0 A.D. (Wikipedie) byla vydána ve verzi 28 (0.28.0). Její kódový název je Boiorix. Představení novinek v poznámkách k vydání. Ke stažení také na Flathubu a Snapcraftu.
Multimediální server a user space API PipeWire (Wikipedie) poskytující PulseAudio, JACK, ALSA a GStreamer rozhraní byl vydán ve verzi 1.6.0 (Bluesky). Přehled novinek na GitLabu.
UBports, nadace a komunita kolem Ubuntu pro telefony a tablety Ubuntu Touch, vydala Ubuntu Touch 24.04-1.2 a 20.04 OTA-12.
Byla vydána (Mastodon, 𝕏) nová stabilní verze 2.0 otevřeného operačního systému pro chytré hodinky AsteroidOS (Wikipedie). Přehled novinek v oznámení o vydání a na YouTube.
WoWee je open-source klient pro MMORPG hru World of Warcraft, kompatibilní se základní verzí a rozšířeními The Burning Crusade a Wrath of the Lich King. Klient je napsaný v C++ a využívá vlastní OpenGL renderer, pro provoz vyžaduje modely, grafiku, hudbu, zvuky a další assety z originální kopie hry od Blizzardu. Zdrojový kód je na GitHubu, dostupný pod licencí MIT.
http://programujte.com/forum/vlakno/26538-sudoku-backtraking/
Řádka if (sudoku[9,9] <> 0) then je špatně. Nevím proč porovnáváš pomocí <>, když hodnota nemůže být záporná, stačí >. Jinak pro takové porovnání musíš převést sudoku[9,9] na číslo. Zkus if (int(sudoku[9,9]) > 0), tohle ti snad bude fungovat (soubor reseni.txt se vůbec nevytvoří, když je poslední políčko rovno 0).
Postupy tohoto typu mi připadějí poněkud na šavli:
for k := e to kanpol[10]-1 do {zakaz policko}
begin
kanpol[k] := kanpol[k+1];
end;
Těžko říct, jestli je horší to neustálé procházení a přepisování pole nebo nadužívání magických konstant. Chybu bych v celém tom kódu asi v dohledné době nenašel, protože odporný jazyk zvaný Packal jsem už notnou dobu nepoužíval.
Místo toho jsem si jen tak pro legraci před chvílí nějaké Sudoku naprogramoval. Pořádně jsem ho netestoval, takže není vůbec jisté, že negeneruje nesmysly.
Algoritmus je založený na Dancing Links, které popisuje Donald Knuth ve svém legendárním článku. Triviálně se dá přepnout na jiný typ Sudoku, třeba 2x2 nebo 4x4. Stačí jenom změnit konstantu SIDE. Snadno se taky dá tento generátor Sudoku upravit na řešítko Sudoku, které vypíše všechna řešení, existují-li nějaká. Stačí načíst zadání, hodnoty zafixovaných políček zvolit pomocí Listing::hide() (což sice obnáší průchod jedním celým spojákem u každého políčka, ovšem každým jenom jednou) a pak spustit na takto upravené datové struktuře celý algoritmus. Zdá se, že všech 288 existujících Sudoku typu 2x2 mi to generuje správně. V případě 3x3 nebo 4x4 bych se hodně načekal. 
#include <iostream>
#include <type_traits>
#include <iomanip>
#include <new>
static const size_t
SIDE = 3,
SIDE_2 = SIDE * SIDE,
SIDE_4 = SIDE_2 * SIDE_2;
static const size_t
FILL = (10 + SIDE_2) / 10 + 1;
class Assignment;
class Listing;
class Field;
class Tile;
class Row;
class Column;
class Board;
class Listing {
protected:
Assignment *fieldPrev;
Assignment *fieldNext;
Assignment *tilePrev;
Assignment *tileNext;
Assignment *rowPrev;
Assignment *rowNext;
Assignment *columnPrev;
Assignment *columnNext;
inline operator Assignment *();
inline void discard();
public:
inline Listing();
inline Listing(Field &field, Tile &tile, Row &row, Column &column);
inline Assignment* prev() const;
inline Assignment* next() const;
inline ~Listing();
};
class Assignment : public Listing {
Assignment *hidingOrder;
const size_t value;
inline void fieldHide(Assignment **order);
inline void fieldShow();
public:
inline Assignment(Field &field, Tile &tile, Row &row, Column &column, size_t value_);
inline operator size_t() const;
inline void hide(Assignment **order);
inline void show(Assignment *order);
};
class Field : public Listing {
size_t value;
public:
inline Field(Tile (&tile)[SIDE_2], Row (&row)[SIDE_2], Column (&column)[SIDE_2]);
inline operator size_t() const;
inline void fieldRecurse(Board &board, size_t level);
inline void operator delete(void*);
inline ~Field();
};
class Tile : public Listing {
};
class Row : public Listing {
};
class Column : public Listing {
};
class Board {
typedef std::aligned_storage<sizeof(Field), alignof(Field)>::type FieldPod;
FieldPod fields[SIDE_4];
public:
inline Board();
inline Field& operator [](size_t idx);
inline ~Board();
};
std::ostream& operator <<(std::ostream &stream, const Field &field);
static inline void recurse(Board &board, size_t level);
inline
Listing::operator Assignment *() {
return static_cast<Assignment *>(this);
}
inline
Listing::Listing() :
fieldPrev(static_cast<Assignment *>(this)),
fieldNext(static_cast<Assignment *>(this)),
tilePrev(static_cast<Assignment *>(this)),
tileNext(static_cast<Assignment *>(this)),
rowPrev(static_cast<Assignment *>(this)),
rowNext(static_cast<Assignment *>(this)),
columnPrev(static_cast<Assignment *>(this)),
columnNext(static_cast<Assignment *>(this))
{}
inline
Listing::Listing(Field &field, Tile &tile, Row &row, Column &column) :
fieldPrev(field.fieldPrev),
fieldNext(static_cast<Assignment *>(static_cast<Listing *>(&field))),
tilePrev(tile.tilePrev),
tileNext(static_cast<Assignment *>(static_cast<Listing *>(&tile))),
rowPrev(row.rowPrev),
rowNext(static_cast<Assignment *>(static_cast<Listing *>(&row))),
columnPrev(column.columnPrev),
columnNext(static_cast<Assignment *>(static_cast<Listing *>(&column)))
{
field.fieldPrev = static_cast<Assignment *>(this);
fieldPrev->fieldNext = static_cast<Assignment *>(this);
tile.tilePrev = static_cast<Assignment *>(this);
tilePrev->tileNext = static_cast<Assignment *>(this);
row.rowPrev = static_cast<Assignment *>(this);
rowPrev->rowNext = static_cast<Assignment *>(this);
column.columnPrev = static_cast<Assignment *>(this);
columnPrev->columnNext = static_cast<Assignment *>(this);
}
inline Assignment*
Listing::prev() const {
return fieldPrev;
}
inline Assignment*
Listing::next() const {
return fieldNext;
}
inline void
Listing::discard() {
fieldPrev = *this;
fieldNext = *this;
}
inline
Listing::~Listing() {
fieldPrev->fieldNext = fieldNext;
fieldNext->fieldPrev = fieldPrev;
tilePrev->tileNext = tileNext;
tileNext->tilePrev = tilePrev;
rowPrev->rowNext = rowNext;
rowNext->rowPrev = rowPrev;
columnPrev->columnNext = columnNext;
columnNext->columnPrev = columnPrev;
}
inline
Assignment::Assignment(Field &field, Tile &tile, Row &row, Column &column, size_t value_) :
Listing(field, tile, row, column),
value(value_)
{}
inline
Assignment::operator size_t() const {
return value;
}
inline void
Assignment::fieldHide(Assignment **order) {
if (*this == fieldNext->fieldPrev) {
fieldPrev->fieldNext = fieldNext;
fieldNext->fieldPrev = fieldPrev;
hidingOrder = *order;
*order = this;
}
}
inline void
Assignment::hide(Assignment **order) {
for (Assignment *as = tileNext; *this != as; as = as->tileNext) as->fieldHide(order);
for (Assignment *as = rowNext; *this != as; as = as->rowNext) as->fieldHide(order);
for (Assignment *as = columnNext; *this != as; as = as->columnNext) as->fieldHide(order);
fieldPrev->fieldNext = fieldNext;
fieldNext->fieldPrev = fieldPrev;
hidingOrder = *order;
*order = this;
}
inline void
Assignment::fieldShow() {
fieldNext->fieldPrev = *this;
fieldPrev->fieldNext = *this;
}
inline void
Assignment::show(Assignment *order) {
while (order) {
order->fieldShow();
order = order->hidingOrder;
}
}
inline
Field::Field(Tile (&tile)[SIDE_2], Row (&row)[SIDE_2], Column (&column)[SIDE_2]) {
for (size_t value = 0; value < SIDE_2; ++value)
new Assignment(*this, tile[value], row[value], column[value], value + 1);
}
inline
Field::operator size_t() const {
return value;
}
inline void
Field::fieldRecurse(Board &board, size_t level) {
Assignment *hiding = nullptr;
for (Assignment *as = next(); *this != as; as = as->next()) {
as->hide(&hiding);
value = *as;
recurse(board, level + 1);
as->show(hiding);
}
}
inline void
Field::operator delete(void*) {
}
inline
Field::~Field() {
Assignment *las = prev();
if (*this != las) {
for (Assignment *as = las->prev(); *this != as; as = as->prev()) {
delete las;
las = as;
}
delete las;
}
discard();
}
inline
Board::Board() {
Tile (*const tiles)[SIDE][SIDE_2] = new Tile[SIDE][SIDE][SIDE_2];
Row (*const rows)[SIDE_2] = new Row[SIDE_2][SIDE_2];
Column (*const columns)[SIDE_2] = new Column[SIDE_2][SIDE_2];
for (size_t row = 0; row < SIDE_2; ++row) {
for (size_t column = 0; column < SIDE_2; ++column) {
new (&fields[row * SIDE_2 + column])
Field(
tiles[row / SIDE][column / SIDE],
rows[row],
columns[column]
);
}
}
delete[] columns;
delete[] rows;
delete[] tiles;
}
inline Field&
Board::operator [](size_t idx) {
return *reinterpret_cast<Field *>(&fields[idx]);
}
inline
Board::~Board() {
for (size_t field = 0; field < SIDE_4; ++field) {
delete reinterpret_cast<Field *>(&fields[field]);
}
}
std::ostream&
operator <<(std::ostream &stream, const Field &field) {
stream << (size_t) field;
return stream;
}
static inline void
recurse(Board &board, size_t level) {
if (SIDE_4 == level) {
for (size_t row = 0; row < SIDE_2; ++row) {
std::cout
<< std::setw(FILL - 1) << std::setfill(' ')
<< board[row * SIDE_2];
for (size_t column = 1; column < SIDE_2; ++column)
std::cout
<< std::setw(FILL) << std::setfill(' ')
<< board[row * SIDE_2 + column];
std::cout << std::endl;
}
std::cout << std::endl;
} else {
board[level].fieldRecurse(board, level);
}
}
int
main() {
Board *board = new Board();
recurse(*board, 0);
delete board;
return (0);
}
Tiskni
Sdílej: