Byly vyhlášeni vítězové a zveřejněny vítězné zdrojové kódy (YouTube, GitHub) již 28. ročníku soutěže International Obfuscated C Code Contest (IOCCC), tj. soutěže o nejnepřehlednější (nejobfuskovanější) zdrojový kód v jazyce C.
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za červenec (YouTube).
Konečně se ochladilo, možná i díky tomu přestaly na chvíli padat rakety jako přezrálé hrušky, díky čemuž se na Virtuální Bastlírně dostane i na jiná, přízemnější témata. Pokud si chcete jako každý měsíc popovídat s dalšími bastlíři, techniky, vědci a profesory u virtuálního pokecu u piva, Virtuální Bastlírna je tu pro Vás.
Ještě před ochlazením se drát na vedení V411 roztáhl o 17 metrů (přesné číslo není známé, ale drát nepřežil) a způsobil tak… více »Na čem aktuálně pracují vývojáři GNOME a KDE Plasma? Pravidelný přehled novinek v Týden v GNOME a Týden v KDE Plasma.
PixiEditor byl vydán ve verzi 2.0. Jedná se o multiplatformní univerzální all-in-one 2D grafický editor. Zvládne rastrovou i vektorovou grafiku, pixel art, k tomu animace a efekty pomocí uzlového grafu. Zdrojové kódy jsou k dispozici na GitHubu pod licencí GNU LGPL 3.0.
Byly představeny novinky v Raspberry Pi Connect for Organisations. Vylepšen byl protokol auditu pro lepší zabezpečení. Raspberry Pi Connect je oficiální služba Raspberry Pi pro vzdálený přístup k jednodeskovým počítačům Raspberry Pi z webového prohlížeče. Verze pro organizace je placená. Cena je 0,50 dolaru za zařízení za měsíc.
CISA (Cybersecurity and Infrastructure Security Agency) oznámila veřejnou dostupnost škálovatelné a distribuované platformy Thorium pro automatizovanou analýzu malwaru. Zdrojové kódy jsou k dispozici na GitHubu.
Ubuntu nově pro testování nových verzí vydává měsíční snapshoty. Dnes vyšel 3. snapshot Ubuntu 25.10 (Questing Quokka).
Společnost Proton AG stojící za Proton Mailem a dalšími službami přidala do svého portfolia Proton Authenticator. S otevřeným zdrojovým kódem a k dispozici na všech zařízeních. Snadno a bezpečně synchronizujte a zálohujte své 2FA kódy. K používání nepotřebujete Proton Account.
Argentinec, který byl náhodně zachycen Google Street View kamerou, jak se zcela nahý prochází po svém dvorku, vysoudil od internetového giganta odškodné. Soud uznal, že jeho soukromí bylo opravdu porušeno – Google mu má vyplatit v přepočtu asi 12 500 dolarů.
http://programujte.com/forum/vlakno/26538-sudoku-backtraking/
Řádka if (sudoku[9,9] <> 0) then
je špatně. Nevím proč porovnáváš pomocí <>
, když hodnota nemůže být záporná, stačí >
. Jinak pro takové porovnání musíš převést sudoku[9,9]
na číslo. Zkus if (int(sudoku[9,9]) > 0)
, tohle ti snad bude fungovat (soubor reseni.txt
se vůbec nevytvoří, když je poslední políčko rovno 0).
Postupy tohoto typu mi připadějí poněkud na šavli:
for k := e to kanpol[10]-1 do {zakaz policko} begin kanpol[k] := kanpol[k+1]; end;
Těžko říct, jestli je horší to neustálé procházení a přepisování pole nebo nadužívání magických konstant. Chybu bych v celém tom kódu asi v dohledné době nenašel, protože odporný jazyk zvaný Packal jsem už notnou dobu nepoužíval.
Místo toho jsem si jen tak pro legraci před chvílí nějaké Sudoku naprogramoval. Pořádně jsem ho netestoval, takže není vůbec jisté, že negeneruje nesmysly. Algoritmus je založený na Dancing Links, které popisuje Donald Knuth ve svém legendárním článku. Triviálně se dá přepnout na jiný typ Sudoku, třeba 2x2 nebo 4x4. Stačí jenom změnit konstantu
SIDE
. Snadno se taky dá tento generátor Sudoku upravit na řešítko Sudoku, které vypíše všechna řešení, existují-li nějaká. Stačí načíst zadání, hodnoty zafixovaných políček zvolit pomocí Listing::hide()
(což sice obnáší průchod jedním celým spojákem u každého políčka, ovšem každým jenom jednou) a pak spustit na takto upravené datové struktuře celý algoritmus. Zdá se, že všech 288 existujících Sudoku typu 2x2 mi to generuje správně. V případě 3x3 nebo 4x4 bych se hodně načekal.
#include <iostream> #include <type_traits> #include <iomanip> #include <new> static const size_t SIDE = 3, SIDE_2 = SIDE * SIDE, SIDE_4 = SIDE_2 * SIDE_2; static const size_t FILL = (10 + SIDE_2) / 10 + 1; class Assignment; class Listing; class Field; class Tile; class Row; class Column; class Board; class Listing { protected: Assignment *fieldPrev; Assignment *fieldNext; Assignment *tilePrev; Assignment *tileNext; Assignment *rowPrev; Assignment *rowNext; Assignment *columnPrev; Assignment *columnNext; inline operator Assignment *(); inline void discard(); public: inline Listing(); inline Listing(Field &field, Tile &tile, Row &row, Column &column); inline Assignment* prev() const; inline Assignment* next() const; inline ~Listing(); }; class Assignment : public Listing { Assignment *hidingOrder; const size_t value; inline void fieldHide(Assignment **order); inline void fieldShow(); public: inline Assignment(Field &field, Tile &tile, Row &row, Column &column, size_t value_); inline operator size_t() const; inline void hide(Assignment **order); inline void show(Assignment *order); }; class Field : public Listing { size_t value; public: inline Field(Tile (&tile)[SIDE_2], Row (&row)[SIDE_2], Column (&column)[SIDE_2]); inline operator size_t() const; inline void fieldRecurse(Board &board, size_t level); inline void operator delete(void*); inline ~Field(); }; class Tile : public Listing { }; class Row : public Listing { }; class Column : public Listing { }; class Board { typedef std::aligned_storage<sizeof(Field), alignof(Field)>::type FieldPod; FieldPod fields[SIDE_4]; public: inline Board(); inline Field& operator [](size_t idx); inline ~Board(); }; std::ostream& operator <<(std::ostream &stream, const Field &field); static inline void recurse(Board &board, size_t level); inline Listing::operator Assignment *() { return static_cast<Assignment *>(this); } inline Listing::Listing() : fieldPrev(static_cast<Assignment *>(this)), fieldNext(static_cast<Assignment *>(this)), tilePrev(static_cast<Assignment *>(this)), tileNext(static_cast<Assignment *>(this)), rowPrev(static_cast<Assignment *>(this)), rowNext(static_cast<Assignment *>(this)), columnPrev(static_cast<Assignment *>(this)), columnNext(static_cast<Assignment *>(this)) {} inline Listing::Listing(Field &field, Tile &tile, Row &row, Column &column) : fieldPrev(field.fieldPrev), fieldNext(static_cast<Assignment *>(static_cast<Listing *>(&field))), tilePrev(tile.tilePrev), tileNext(static_cast<Assignment *>(static_cast<Listing *>(&tile))), rowPrev(row.rowPrev), rowNext(static_cast<Assignment *>(static_cast<Listing *>(&row))), columnPrev(column.columnPrev), columnNext(static_cast<Assignment *>(static_cast<Listing *>(&column))) { field.fieldPrev = static_cast<Assignment *>(this); fieldPrev->fieldNext = static_cast<Assignment *>(this); tile.tilePrev = static_cast<Assignment *>(this); tilePrev->tileNext = static_cast<Assignment *>(this); row.rowPrev = static_cast<Assignment *>(this); rowPrev->rowNext = static_cast<Assignment *>(this); column.columnPrev = static_cast<Assignment *>(this); columnPrev->columnNext = static_cast<Assignment *>(this); } inline Assignment* Listing::prev() const { return fieldPrev; } inline Assignment* Listing::next() const { return fieldNext; } inline void Listing::discard() { fieldPrev = *this; fieldNext = *this; } inline Listing::~Listing() { fieldPrev->fieldNext = fieldNext; fieldNext->fieldPrev = fieldPrev; tilePrev->tileNext = tileNext; tileNext->tilePrev = tilePrev; rowPrev->rowNext = rowNext; rowNext->rowPrev = rowPrev; columnPrev->columnNext = columnNext; columnNext->columnPrev = columnPrev; } inline Assignment::Assignment(Field &field, Tile &tile, Row &row, Column &column, size_t value_) : Listing(field, tile, row, column), value(value_) {} inline Assignment::operator size_t() const { return value; } inline void Assignment::fieldHide(Assignment **order) { if (*this == fieldNext->fieldPrev) { fieldPrev->fieldNext = fieldNext; fieldNext->fieldPrev = fieldPrev; hidingOrder = *order; *order = this; } } inline void Assignment::hide(Assignment **order) { for (Assignment *as = tileNext; *this != as; as = as->tileNext) as->fieldHide(order); for (Assignment *as = rowNext; *this != as; as = as->rowNext) as->fieldHide(order); for (Assignment *as = columnNext; *this != as; as = as->columnNext) as->fieldHide(order); fieldPrev->fieldNext = fieldNext; fieldNext->fieldPrev = fieldPrev; hidingOrder = *order; *order = this; } inline void Assignment::fieldShow() { fieldNext->fieldPrev = *this; fieldPrev->fieldNext = *this; } inline void Assignment::show(Assignment *order) { while (order) { order->fieldShow(); order = order->hidingOrder; } } inline Field::Field(Tile (&tile)[SIDE_2], Row (&row)[SIDE_2], Column (&column)[SIDE_2]) { for (size_t value = 0; value < SIDE_2; ++value) new Assignment(*this, tile[value], row[value], column[value], value + 1); } inline Field::operator size_t() const { return value; } inline void Field::fieldRecurse(Board &board, size_t level) { Assignment *hiding = nullptr; for (Assignment *as = next(); *this != as; as = as->next()) { as->hide(&hiding); value = *as; recurse(board, level + 1); as->show(hiding); } } inline void Field::operator delete(void*) { } inline Field::~Field() { Assignment *las = prev(); if (*this != las) { for (Assignment *as = las->prev(); *this != as; as = as->prev()) { delete las; las = as; } delete las; } discard(); } inline Board::Board() { Tile (*const tiles)[SIDE][SIDE_2] = new Tile[SIDE][SIDE][SIDE_2]; Row (*const rows)[SIDE_2] = new Row[SIDE_2][SIDE_2]; Column (*const columns)[SIDE_2] = new Column[SIDE_2][SIDE_2]; for (size_t row = 0; row < SIDE_2; ++row) { for (size_t column = 0; column < SIDE_2; ++column) { new (&fields[row * SIDE_2 + column]) Field( tiles[row / SIDE][column / SIDE], rows[row], columns[column] ); } } delete[] columns; delete[] rows; delete[] tiles; } inline Field& Board::operator [](size_t idx) { return *reinterpret_cast<Field *>(&fields[idx]); } inline Board::~Board() { for (size_t field = 0; field < SIDE_4; ++field) { delete reinterpret_cast<Field *>(&fields[field]); } } std::ostream& operator <<(std::ostream &stream, const Field &field) { stream << (size_t) field; return stream; } static inline void recurse(Board &board, size_t level) { if (SIDE_4 == level) { for (size_t row = 0; row < SIDE_2; ++row) { std::cout << std::setw(FILL - 1) << std::setfill(' ') << board[row * SIDE_2]; for (size_t column = 1; column < SIDE_2; ++column) std::cout << std::setw(FILL) << std::setfill(' ') << board[row * SIDE_2 + column]; std::cout << std::endl; } std::cout << std::endl; } else { board[level].fieldRecurse(board, level); } } int main() { Board *board = new Board(); recurse(*board, 0); delete board; return (0); }
Tiskni
Sdílej: