Evropská komise zahájila tři vyšetřování týkající se cloudových platforem Amazon Web Services (AWS) a Microsoft Azure. Evropská exekutiva, která plní také funkci unijního antimonopolního orgánu, chce mimo jiné určit, zda jsou americké společnosti Microsoft a Amazon v cloudových službách takzvanými gatekeepery, tedy hráči, kteří významně ovlivňují provoz internetu a musí dle nařízení o digitálních trzích (DMA) na společném trhu
… více »Společnost Meta Platforms vyhrála ostře sledovaný spor o akvizici sítě pro sdílení fotografií Instagram a komunikační aplikace WhatsApp. Podle amerického soudu firma jejich převzetím neporušila antimonopolní zákon, protože si tak nemonopolizovala trh sociálních sítí. Žalobu na Metu podala před pěti lety americká Federální obchodní komise (FTC). FTC argumentovala, že Meta, tehdy známá jako Facebook, koupila tyto dvě společnosti v letech 2012 a 2014 proto, aby s nimi nemusela soutěžit.
Home Assistant včera představil svůj nejnovější oficiální hardware: Home Assistant Connect ZBT-2 pro připojení zařízení na sítích Zigbee nebo Thread.
Byla vydána verze 9.1 open source virtualizační platformy Proxmox VE (Proxmox Virtual Environment, Wikipedie) založené na Debianu. Přehled novinek v poznámkách k vydání a informačním videu.
Byl aktualizován seznam 500 nejvýkonnějších superpočítačů na světě TOP500. Nejvýkonnějším superpočítačem zůstává El Capitan od HPE (Cray) s výkonem 1,809 exaFLOPS. Druhý Frontier má výkon 1,353 exaFLOPS. Třetí Aurora má výkon 1,012 exaFLOPS. Nejvýkonnější superpočítač v Evropě JUPITER Booster s výkonem 1,000 exaFLOPS je na čtvrtém místě. Nejvýkonnější český superpočítač C24 klesl na 192. místo. Karolina, GPU partition klesla na 224. místo a Karolina, CPU partition na 450. místo. Další přehledy a statistiky na stránkách projektu.
Microsoft představil Azure Cobalt 200, tj. svůj vlastní SoC (System-on-Chip) postavený na ARM a optimalizovaný pro cloud.
Co způsobilo včerejší nejhorší výpadek Cloudflare od roku 2019? Nebyl to kybernetický útok. Vše začalo změnou oprávnění v jednom z databázových systémů a pokračovalo vygenerováním problém způsobujícího konfiguračního souboru a jeho distribucí na všechny počítače Cloudflare. Podrobně v příspěvku na blogu Cloudflare.
Byla vydána (Mastodon, 𝕏) první RC verze GIMPu 3.2. Přehled novinek v oznámení o vydání. Podrobně v souboru NEWS na GitLabu.
Eugen Rochko, zakladatel Mastodonu, tj. sociální sítě, která není na prodej, oznámil, že po téměř 10 letech odstupuje z pozice CEO a převádí vlastnictví ochranné známky a dalších aktiv na neziskovou organizaci Mastodon.
Byla vydána nová major verze 5.0 svobodného 3D softwaru Blender. Přehled novinek i s náhledy a videi v obsáhlých poznámkách k vydání. Videopředstavení na YouTube.
http://programujte.com/forum/vlakno/26538-sudoku-backtraking/
Řádka if (sudoku[9,9] <> 0) then je špatně. Nevím proč porovnáváš pomocí <>, když hodnota nemůže být záporná, stačí >. Jinak pro takové porovnání musíš převést sudoku[9,9] na číslo. Zkus if (int(sudoku[9,9]) > 0), tohle ti snad bude fungovat (soubor reseni.txt se vůbec nevytvoří, když je poslední políčko rovno 0).
Postupy tohoto typu mi připadějí poněkud na šavli:
for k := e to kanpol[10]-1 do {zakaz policko}
begin
kanpol[k] := kanpol[k+1];
end;
Těžko říct, jestli je horší to neustálé procházení a přepisování pole nebo nadužívání magických konstant. Chybu bych v celém tom kódu asi v dohledné době nenašel, protože odporný jazyk zvaný Packal jsem už notnou dobu nepoužíval.
Místo toho jsem si jen tak pro legraci před chvílí nějaké Sudoku naprogramoval. Pořádně jsem ho netestoval, takže není vůbec jisté, že negeneruje nesmysly.
Algoritmus je založený na Dancing Links, které popisuje Donald Knuth ve svém legendárním článku. Triviálně se dá přepnout na jiný typ Sudoku, třeba 2x2 nebo 4x4. Stačí jenom změnit konstantu SIDE. Snadno se taky dá tento generátor Sudoku upravit na řešítko Sudoku, které vypíše všechna řešení, existují-li nějaká. Stačí načíst zadání, hodnoty zafixovaných políček zvolit pomocí Listing::hide() (což sice obnáší průchod jedním celým spojákem u každého políčka, ovšem každým jenom jednou) a pak spustit na takto upravené datové struktuře celý algoritmus. Zdá se, že všech 288 existujících Sudoku typu 2x2 mi to generuje správně. V případě 3x3 nebo 4x4 bych se hodně načekal. 
#include <iostream>
#include <type_traits>
#include <iomanip>
#include <new>
static const size_t
SIDE = 3,
SIDE_2 = SIDE * SIDE,
SIDE_4 = SIDE_2 * SIDE_2;
static const size_t
FILL = (10 + SIDE_2) / 10 + 1;
class Assignment;
class Listing;
class Field;
class Tile;
class Row;
class Column;
class Board;
class Listing {
protected:
Assignment *fieldPrev;
Assignment *fieldNext;
Assignment *tilePrev;
Assignment *tileNext;
Assignment *rowPrev;
Assignment *rowNext;
Assignment *columnPrev;
Assignment *columnNext;
inline operator Assignment *();
inline void discard();
public:
inline Listing();
inline Listing(Field &field, Tile &tile, Row &row, Column &column);
inline Assignment* prev() const;
inline Assignment* next() const;
inline ~Listing();
};
class Assignment : public Listing {
Assignment *hidingOrder;
const size_t value;
inline void fieldHide(Assignment **order);
inline void fieldShow();
public:
inline Assignment(Field &field, Tile &tile, Row &row, Column &column, size_t value_);
inline operator size_t() const;
inline void hide(Assignment **order);
inline void show(Assignment *order);
};
class Field : public Listing {
size_t value;
public:
inline Field(Tile (&tile)[SIDE_2], Row (&row)[SIDE_2], Column (&column)[SIDE_2]);
inline operator size_t() const;
inline void fieldRecurse(Board &board, size_t level);
inline void operator delete(void*);
inline ~Field();
};
class Tile : public Listing {
};
class Row : public Listing {
};
class Column : public Listing {
};
class Board {
typedef std::aligned_storage<sizeof(Field), alignof(Field)>::type FieldPod;
FieldPod fields[SIDE_4];
public:
inline Board();
inline Field& operator [](size_t idx);
inline ~Board();
};
std::ostream& operator <<(std::ostream &stream, const Field &field);
static inline void recurse(Board &board, size_t level);
inline
Listing::operator Assignment *() {
return static_cast<Assignment *>(this);
}
inline
Listing::Listing() :
fieldPrev(static_cast<Assignment *>(this)),
fieldNext(static_cast<Assignment *>(this)),
tilePrev(static_cast<Assignment *>(this)),
tileNext(static_cast<Assignment *>(this)),
rowPrev(static_cast<Assignment *>(this)),
rowNext(static_cast<Assignment *>(this)),
columnPrev(static_cast<Assignment *>(this)),
columnNext(static_cast<Assignment *>(this))
{}
inline
Listing::Listing(Field &field, Tile &tile, Row &row, Column &column) :
fieldPrev(field.fieldPrev),
fieldNext(static_cast<Assignment *>(static_cast<Listing *>(&field))),
tilePrev(tile.tilePrev),
tileNext(static_cast<Assignment *>(static_cast<Listing *>(&tile))),
rowPrev(row.rowPrev),
rowNext(static_cast<Assignment *>(static_cast<Listing *>(&row))),
columnPrev(column.columnPrev),
columnNext(static_cast<Assignment *>(static_cast<Listing *>(&column)))
{
field.fieldPrev = static_cast<Assignment *>(this);
fieldPrev->fieldNext = static_cast<Assignment *>(this);
tile.tilePrev = static_cast<Assignment *>(this);
tilePrev->tileNext = static_cast<Assignment *>(this);
row.rowPrev = static_cast<Assignment *>(this);
rowPrev->rowNext = static_cast<Assignment *>(this);
column.columnPrev = static_cast<Assignment *>(this);
columnPrev->columnNext = static_cast<Assignment *>(this);
}
inline Assignment*
Listing::prev() const {
return fieldPrev;
}
inline Assignment*
Listing::next() const {
return fieldNext;
}
inline void
Listing::discard() {
fieldPrev = *this;
fieldNext = *this;
}
inline
Listing::~Listing() {
fieldPrev->fieldNext = fieldNext;
fieldNext->fieldPrev = fieldPrev;
tilePrev->tileNext = tileNext;
tileNext->tilePrev = tilePrev;
rowPrev->rowNext = rowNext;
rowNext->rowPrev = rowPrev;
columnPrev->columnNext = columnNext;
columnNext->columnPrev = columnPrev;
}
inline
Assignment::Assignment(Field &field, Tile &tile, Row &row, Column &column, size_t value_) :
Listing(field, tile, row, column),
value(value_)
{}
inline
Assignment::operator size_t() const {
return value;
}
inline void
Assignment::fieldHide(Assignment **order) {
if (*this == fieldNext->fieldPrev) {
fieldPrev->fieldNext = fieldNext;
fieldNext->fieldPrev = fieldPrev;
hidingOrder = *order;
*order = this;
}
}
inline void
Assignment::hide(Assignment **order) {
for (Assignment *as = tileNext; *this != as; as = as->tileNext) as->fieldHide(order);
for (Assignment *as = rowNext; *this != as; as = as->rowNext) as->fieldHide(order);
for (Assignment *as = columnNext; *this != as; as = as->columnNext) as->fieldHide(order);
fieldPrev->fieldNext = fieldNext;
fieldNext->fieldPrev = fieldPrev;
hidingOrder = *order;
*order = this;
}
inline void
Assignment::fieldShow() {
fieldNext->fieldPrev = *this;
fieldPrev->fieldNext = *this;
}
inline void
Assignment::show(Assignment *order) {
while (order) {
order->fieldShow();
order = order->hidingOrder;
}
}
inline
Field::Field(Tile (&tile)[SIDE_2], Row (&row)[SIDE_2], Column (&column)[SIDE_2]) {
for (size_t value = 0; value < SIDE_2; ++value)
new Assignment(*this, tile[value], row[value], column[value], value + 1);
}
inline
Field::operator size_t() const {
return value;
}
inline void
Field::fieldRecurse(Board &board, size_t level) {
Assignment *hiding = nullptr;
for (Assignment *as = next(); *this != as; as = as->next()) {
as->hide(&hiding);
value = *as;
recurse(board, level + 1);
as->show(hiding);
}
}
inline void
Field::operator delete(void*) {
}
inline
Field::~Field() {
Assignment *las = prev();
if (*this != las) {
for (Assignment *as = las->prev(); *this != as; as = as->prev()) {
delete las;
las = as;
}
delete las;
}
discard();
}
inline
Board::Board() {
Tile (*const tiles)[SIDE][SIDE_2] = new Tile[SIDE][SIDE][SIDE_2];
Row (*const rows)[SIDE_2] = new Row[SIDE_2][SIDE_2];
Column (*const columns)[SIDE_2] = new Column[SIDE_2][SIDE_2];
for (size_t row = 0; row < SIDE_2; ++row) {
for (size_t column = 0; column < SIDE_2; ++column) {
new (&fields[row * SIDE_2 + column])
Field(
tiles[row / SIDE][column / SIDE],
rows[row],
columns[column]
);
}
}
delete[] columns;
delete[] rows;
delete[] tiles;
}
inline Field&
Board::operator [](size_t idx) {
return *reinterpret_cast<Field *>(&fields[idx]);
}
inline
Board::~Board() {
for (size_t field = 0; field < SIDE_4; ++field) {
delete reinterpret_cast<Field *>(&fields[field]);
}
}
std::ostream&
operator <<(std::ostream &stream, const Field &field) {
stream << (size_t) field;
return stream;
}
static inline void
recurse(Board &board, size_t level) {
if (SIDE_4 == level) {
for (size_t row = 0; row < SIDE_2; ++row) {
std::cout
<< std::setw(FILL - 1) << std::setfill(' ')
<< board[row * SIDE_2];
for (size_t column = 1; column < SIDE_2; ++column)
std::cout
<< std::setw(FILL) << std::setfill(' ')
<< board[row * SIDE_2 + column];
std::cout << std::endl;
}
std::cout << std::endl;
} else {
board[level].fieldRecurse(board, level);
}
}
int
main() {
Board *board = new Board();
recurse(*board, 0);
delete board;
return (0);
}
Tiskni
Sdílej: