Ubuntu pro testování nových verzí vydává měsíční snapshoty. Dnes vyšel 1. snapshot Ubuntu 26.04 LTS (Resolute Raccoon).
Zástupci členských států EU se včera shodli na návrhu, který má bojovat proti šíření materiálů na internetu zobrazujících sexuální zneužívání dětí. Nařízení známé pod zkratkou CSAM a přezdívané chat control mělo množství kritiků a dlouho nebyla pro jeho schválení dostatečná podpora. Pro schválení byla potřeba kvalifikovaná většina a dánské předsednictví v Radě EU se snažilo dosáhnout kompromisu. Návrh nakonec po dlouhých týdnech
… více »Britské herní studio Facepunch stojící za počítačovými hrami Garry's Mod a Rust uvolnilo svůj herní engine s&box (Wikipedie) jako open source. Zdrojové kódy jsou k dispozici na GitHubu pod licencí MIT. Herní engine s&box je postavený nad proprietárním herním enginem Source 2 od společnosti Valve.
Vývoj programovacího jazyka Zig byl přesunut z GitHubu na Codeberg. Sponzoring na Every.
Stejně jako GNOME i KDE Plasma končí s X11. KDE Plasma 6.8 poběží už pouze nad Waylandem. Aplikace pro X11 budou využívat XWayland.
Poslanci Evropského parlamentu dnes vyzvali k výraznému zvýšení ochrany nezletilých na internetu, včetně zákazu vstupu na sociální sítě pro osoby mladší 16 let. Legislativně nezávazná zpráva, kterou dnes odsouhlasil Evropský parlament poměrem 493 hlasů pro ku 92 proti, kromě zavedení věkové hranice 16 let pro využívání sociálních sítí, platforem pro sdílení videí či společníků s umělou inteligencí (AI) vyzývá také k zákazu … více »
Doom v KiCadu nebo na osciloskopu? Žádný problém: KiDoom: Running DOOM on PCB Traces a ScopeDoom: DOOM on an Oscilloscope via Sound Card.
Po AlmaLinuxu byl v nové stabilní verzi 10.1 vydán také Rocky Linux. Přehled novinek v poznámkách k vydání.
Open source reimplementace počítačových her Tomb Raider I a Tomb Raider II spolu s dalšími vylepšeními a opravami chyb TRX byla vydána ve verzi 1.0. Jedná se o sloučení projektů / enginů TR1X a TR2X do jednoho TRX. Videoukázka na YouTube.
Společnost Seznam.cz spouští konverzační nástroj založený na umělé inteligenci Seznam Asistent. Asistent využívá vlastní jazykový model SeLLMa a dočasně i komerční modely od OpenAI provozované v evropských datacentrech prostřednictvím Microsoft Azure. Dlouhodobým cílem Seznamu je provozovat Asistenta výhradně na interních jazykových modelech a ve vlastních datových centrech.
http://programujte.com/forum/vlakno/26538-sudoku-backtraking/
Řádka if (sudoku[9,9] <> 0) then je špatně. Nevím proč porovnáváš pomocí <>, když hodnota nemůže být záporná, stačí >. Jinak pro takové porovnání musíš převést sudoku[9,9] na číslo. Zkus if (int(sudoku[9,9]) > 0), tohle ti snad bude fungovat (soubor reseni.txt se vůbec nevytvoří, když je poslední políčko rovno 0).
Postupy tohoto typu mi připadějí poněkud na šavli:
for k := e to kanpol[10]-1 do {zakaz policko}
begin
kanpol[k] := kanpol[k+1];
end;
Těžko říct, jestli je horší to neustálé procházení a přepisování pole nebo nadužívání magických konstant. Chybu bych v celém tom kódu asi v dohledné době nenašel, protože odporný jazyk zvaný Packal jsem už notnou dobu nepoužíval.
Místo toho jsem si jen tak pro legraci před chvílí nějaké Sudoku naprogramoval. Pořádně jsem ho netestoval, takže není vůbec jisté, že negeneruje nesmysly.
Algoritmus je založený na Dancing Links, které popisuje Donald Knuth ve svém legendárním článku. Triviálně se dá přepnout na jiný typ Sudoku, třeba 2x2 nebo 4x4. Stačí jenom změnit konstantu SIDE. Snadno se taky dá tento generátor Sudoku upravit na řešítko Sudoku, které vypíše všechna řešení, existují-li nějaká. Stačí načíst zadání, hodnoty zafixovaných políček zvolit pomocí Listing::hide() (což sice obnáší průchod jedním celým spojákem u každého políčka, ovšem každým jenom jednou) a pak spustit na takto upravené datové struktuře celý algoritmus. Zdá se, že všech 288 existujících Sudoku typu 2x2 mi to generuje správně. V případě 3x3 nebo 4x4 bych se hodně načekal. 
#include <iostream>
#include <type_traits>
#include <iomanip>
#include <new>
static const size_t
SIDE = 3,
SIDE_2 = SIDE * SIDE,
SIDE_4 = SIDE_2 * SIDE_2;
static const size_t
FILL = (10 + SIDE_2) / 10 + 1;
class Assignment;
class Listing;
class Field;
class Tile;
class Row;
class Column;
class Board;
class Listing {
protected:
Assignment *fieldPrev;
Assignment *fieldNext;
Assignment *tilePrev;
Assignment *tileNext;
Assignment *rowPrev;
Assignment *rowNext;
Assignment *columnPrev;
Assignment *columnNext;
inline operator Assignment *();
inline void discard();
public:
inline Listing();
inline Listing(Field &field, Tile &tile, Row &row, Column &column);
inline Assignment* prev() const;
inline Assignment* next() const;
inline ~Listing();
};
class Assignment : public Listing {
Assignment *hidingOrder;
const size_t value;
inline void fieldHide(Assignment **order);
inline void fieldShow();
public:
inline Assignment(Field &field, Tile &tile, Row &row, Column &column, size_t value_);
inline operator size_t() const;
inline void hide(Assignment **order);
inline void show(Assignment *order);
};
class Field : public Listing {
size_t value;
public:
inline Field(Tile (&tile)[SIDE_2], Row (&row)[SIDE_2], Column (&column)[SIDE_2]);
inline operator size_t() const;
inline void fieldRecurse(Board &board, size_t level);
inline void operator delete(void*);
inline ~Field();
};
class Tile : public Listing {
};
class Row : public Listing {
};
class Column : public Listing {
};
class Board {
typedef std::aligned_storage<sizeof(Field), alignof(Field)>::type FieldPod;
FieldPod fields[SIDE_4];
public:
inline Board();
inline Field& operator [](size_t idx);
inline ~Board();
};
std::ostream& operator <<(std::ostream &stream, const Field &field);
static inline void recurse(Board &board, size_t level);
inline
Listing::operator Assignment *() {
return static_cast<Assignment *>(this);
}
inline
Listing::Listing() :
fieldPrev(static_cast<Assignment *>(this)),
fieldNext(static_cast<Assignment *>(this)),
tilePrev(static_cast<Assignment *>(this)),
tileNext(static_cast<Assignment *>(this)),
rowPrev(static_cast<Assignment *>(this)),
rowNext(static_cast<Assignment *>(this)),
columnPrev(static_cast<Assignment *>(this)),
columnNext(static_cast<Assignment *>(this))
{}
inline
Listing::Listing(Field &field, Tile &tile, Row &row, Column &column) :
fieldPrev(field.fieldPrev),
fieldNext(static_cast<Assignment *>(static_cast<Listing *>(&field))),
tilePrev(tile.tilePrev),
tileNext(static_cast<Assignment *>(static_cast<Listing *>(&tile))),
rowPrev(row.rowPrev),
rowNext(static_cast<Assignment *>(static_cast<Listing *>(&row))),
columnPrev(column.columnPrev),
columnNext(static_cast<Assignment *>(static_cast<Listing *>(&column)))
{
field.fieldPrev = static_cast<Assignment *>(this);
fieldPrev->fieldNext = static_cast<Assignment *>(this);
tile.tilePrev = static_cast<Assignment *>(this);
tilePrev->tileNext = static_cast<Assignment *>(this);
row.rowPrev = static_cast<Assignment *>(this);
rowPrev->rowNext = static_cast<Assignment *>(this);
column.columnPrev = static_cast<Assignment *>(this);
columnPrev->columnNext = static_cast<Assignment *>(this);
}
inline Assignment*
Listing::prev() const {
return fieldPrev;
}
inline Assignment*
Listing::next() const {
return fieldNext;
}
inline void
Listing::discard() {
fieldPrev = *this;
fieldNext = *this;
}
inline
Listing::~Listing() {
fieldPrev->fieldNext = fieldNext;
fieldNext->fieldPrev = fieldPrev;
tilePrev->tileNext = tileNext;
tileNext->tilePrev = tilePrev;
rowPrev->rowNext = rowNext;
rowNext->rowPrev = rowPrev;
columnPrev->columnNext = columnNext;
columnNext->columnPrev = columnPrev;
}
inline
Assignment::Assignment(Field &field, Tile &tile, Row &row, Column &column, size_t value_) :
Listing(field, tile, row, column),
value(value_)
{}
inline
Assignment::operator size_t() const {
return value;
}
inline void
Assignment::fieldHide(Assignment **order) {
if (*this == fieldNext->fieldPrev) {
fieldPrev->fieldNext = fieldNext;
fieldNext->fieldPrev = fieldPrev;
hidingOrder = *order;
*order = this;
}
}
inline void
Assignment::hide(Assignment **order) {
for (Assignment *as = tileNext; *this != as; as = as->tileNext) as->fieldHide(order);
for (Assignment *as = rowNext; *this != as; as = as->rowNext) as->fieldHide(order);
for (Assignment *as = columnNext; *this != as; as = as->columnNext) as->fieldHide(order);
fieldPrev->fieldNext = fieldNext;
fieldNext->fieldPrev = fieldPrev;
hidingOrder = *order;
*order = this;
}
inline void
Assignment::fieldShow() {
fieldNext->fieldPrev = *this;
fieldPrev->fieldNext = *this;
}
inline void
Assignment::show(Assignment *order) {
while (order) {
order->fieldShow();
order = order->hidingOrder;
}
}
inline
Field::Field(Tile (&tile)[SIDE_2], Row (&row)[SIDE_2], Column (&column)[SIDE_2]) {
for (size_t value = 0; value < SIDE_2; ++value)
new Assignment(*this, tile[value], row[value], column[value], value + 1);
}
inline
Field::operator size_t() const {
return value;
}
inline void
Field::fieldRecurse(Board &board, size_t level) {
Assignment *hiding = nullptr;
for (Assignment *as = next(); *this != as; as = as->next()) {
as->hide(&hiding);
value = *as;
recurse(board, level + 1);
as->show(hiding);
}
}
inline void
Field::operator delete(void*) {
}
inline
Field::~Field() {
Assignment *las = prev();
if (*this != las) {
for (Assignment *as = las->prev(); *this != as; as = as->prev()) {
delete las;
las = as;
}
delete las;
}
discard();
}
inline
Board::Board() {
Tile (*const tiles)[SIDE][SIDE_2] = new Tile[SIDE][SIDE][SIDE_2];
Row (*const rows)[SIDE_2] = new Row[SIDE_2][SIDE_2];
Column (*const columns)[SIDE_2] = new Column[SIDE_2][SIDE_2];
for (size_t row = 0; row < SIDE_2; ++row) {
for (size_t column = 0; column < SIDE_2; ++column) {
new (&fields[row * SIDE_2 + column])
Field(
tiles[row / SIDE][column / SIDE],
rows[row],
columns[column]
);
}
}
delete[] columns;
delete[] rows;
delete[] tiles;
}
inline Field&
Board::operator [](size_t idx) {
return *reinterpret_cast<Field *>(&fields[idx]);
}
inline
Board::~Board() {
for (size_t field = 0; field < SIDE_4; ++field) {
delete reinterpret_cast<Field *>(&fields[field]);
}
}
std::ostream&
operator <<(std::ostream &stream, const Field &field) {
stream << (size_t) field;
return stream;
}
static inline void
recurse(Board &board, size_t level) {
if (SIDE_4 == level) {
for (size_t row = 0; row < SIDE_2; ++row) {
std::cout
<< std::setw(FILL - 1) << std::setfill(' ')
<< board[row * SIDE_2];
for (size_t column = 1; column < SIDE_2; ++column)
std::cout
<< std::setw(FILL) << std::setfill(' ')
<< board[row * SIDE_2 + column];
std::cout << std::endl;
}
std::cout << std::endl;
} else {
board[level].fieldRecurse(board, level);
}
}
int
main() {
Board *board = new Board();
recurse(*board, 0);
delete board;
return (0);
}
Tiskni
Sdílej: