Byl vydán Mozilla Firefox 145.0. Přehled novinek v poznámkách k vydání a poznámkách k vydání pro vývojáře. Ukončena byla podpora 32bitového Firefoxu pro Linux. Přidána byla podpora Matrosky. Řešeny jsou rovněž bezpečnostní chyby. Nový Firefox 145 bude brzy k dispozici také na Flathubu a Snapcraftu.
Lidé.cz (Wikipedie) jsou zpět jako sociální síť s "ambicí stát se místem pro kultivované debaty a bezpečným online prostředím".
Byla vydána nová verze 4.4 multiplatformního integrovaného vývojového prostředí (IDE) pro rychlý vývoj aplikaci (RAD) ve Free Pascalu Lazarus (Wikipedie). Využíván je Free Pascal Compiler (FPC) 3.2.2.
ASUS má v nabídce komplexní řešení pro vývoj a nasazení AI: kompaktní stolní AI superpočítač ASUS Ascent GX10 poháněný superčipem NVIDIA GB10 Grace Blackwell a platformou NVIDIA DGX Spark. S operačním systémem NVIDIA DGX založeném na Ubuntu.
Desktopové prostredie Trinity Desktop vyšlo vo verzii R14.1.5. Je tu opravená chyba v tqt komponente spôsobujúca 100% vyťaženie cpu, dlaždice pre viac monitorov a nemenej dôležité su dizajnové zmeny v podobe ikon, pozadí atď. Pridaná bola podpora distribúcií Debian Trixie, Ubuntu Questing, RHEL 10 a OpenSUSE Leap 16.
Grafická aplikace Easy Effects (Flathub), původně PulseEffects, umožňující snadno povolovat a zakazovat různé audio efekty v aplikacích používajících multimediální server PipeWire, byla vydána ve verzi 8.0.0. Místo GTK 4 je nově postavená nad Qt, QML a Kirigami.
Na YouTube lze zhlédnout Godot Engine – 2025 Showreel s ukázkami toho nejlepšího letos vytvořeného v multiplatformním open source herním enginu Godot.
Blíží se konec roku a tím i všemožná vyhlášení slov roku 2025. Dle Collins English Dictionary je slovem roku vibe coding, dle Dictionary.com je to 6-7, …
Cloudflare Radar: podíl Linuxu na desktopu dosáhl v listopadu 6,2 %.
Chcete vědět, co se odehrálo ve světě techniky za poslední měsíc? Nebo si popovídat o tom, co zrovna bastlíte? Pak doražte na listopadovou Virtuální Bastlírnu s mikrofonem a kamerou, nalijte si něco k pití a ponořte se s strahovskými bastlíři do diskuze u virtuálního piva o technice i všem možném okolo. Mezi nejvýznamnější novinky patří Průšovo oznámení Core One L, zavedení RFID na filamentech, tisk silikonu nebo nový slicer. Dozvíte se ale i
… více »void funkce1(int chTime) // chTime - jak dlouho má cykl běžet.
{
unsigned int t0 = CurrentTick(); // začatek cyklu - neměnná hodnota
unsigned int t1 = CurrentTick(); // aktuální doba cyklu
unsigned int overFlow = 0; // detekuje přeteceni CurrentTick
while((t0+chTime)>(t1+overFlow))
{
// ZDE BUDE KÓD, KTERÝ CHCI ČASOVAT
// 1 CYKLUS MŮŽE TRVAT AŽ 2s
t1=CurrentTick(); // aktualizace času smyčky - "aktuální čas"
if(t1 < t0) // kontrola proti přetečení
{
overFlow = 65535;
}
}
}
time(2), gettimeofday(2), alarm(2), setitimer(2), …
Ten kód je celkově dost problematický, není třeba jasné, kde přesně se vzala magická konstanta 65535 (není to spíš 65536?) a počítá se jen s jedním přetečením. Pokud "vrátí okamžitě" znamená, že se cyklus neprovede ani jednou, šlo by to vysvětlit např. tím, že překladač prohodil pořadí těch dvou inicializací a t1 se inicializovala na 65535, ale t0 už na nulu. V každém případě je nesmysl na začátku CurrentTick() (Co to vůbec je? Standardní systémová funkce určitě ne.) volat dvakrát, spíš použijte pro t1 hodnotu, kterou už máte v t0.
šlo by to vysvětlit např. tím, že překladač prohodil pořadí těch dvou inicializací
Nejspíš nešlo. Tím, že je tam volání funkce, tak to udělat nemůže. Jedině že by ta funkce byla inline a prováděla něco jako čtení z nějaké globální proměnné, kterou cosi na pozadí aktualizuje.
Na druhou stranu si lze snadno představit, jak by cyklus neskončil nikdy: pokud se t0 inicializuje na nulu, podmínka "t1 < t0" nebude nikdy splněná a přetečení nedetekujete.
ale v principu by to nemělo vadit
Může, protože pak překladači nic nebrání ty dvě inicializace prohodit. Proto existují věci jako bariéry, abyste mu v tom zabránil. V každém případě ale není sebemenší důvod při inicializaci tu funkci volat dvakrát, prostě použijte stejnou hodnotu pro obě proměnné, je to jednodušší a nebudete riskovat překvapení.
Kdyby se t0 inicializovalo na 0 (což je pouze před započetím časového cyklu), vůbec by to nevadilo, vlastně by to byl ideální případ. Jelikož max časování je jak jsem psal 50 sekund.
Holt si asi každý musí natlouct sám, aby pochopil, jakou trvanlivost tyhle skryté předpoklady mají a jak nepříjemné je pak hledat chyby, které se začnou objevovat, když jednoho dne přestanou platit (v době, kdy už jste dávno zapomněl, kde všude jste to předpokládal). Pokud mermomocí trváte na tom, že to nechcete napsat pořádně, tak aspoň kontrolujte ten argument, ať aspoň víte proč, až to "bouchne".
if(t1 <= t0) a následně overFlow inkrementovat o 65536 kvůli vícenásobnému přetečení.
t0, pro vás je spíš důležité, jestli je menší než minulá hodnota t1 (pokud se můžeme spolehnout, že vám to během jednoho cyklu nenaskočí o 65536 a víc).
Ještě jedna praktická rada:
Ohledně toho CurrenTick() - tohle je programované pro řídicí jednotku robota.
Pokud se dotaz týká nějakého velmi specifického prostředí, kde nelze použít běžné nástroje a obraty, je dobré na to hned na začátku upozornit.
uint16_t t0 = CurrentTick();
while (chTime > 0)
{
...
uint16_t t1 = CurrentTick();
chTime -= t1 - t0;
t0 = t1;
}
Nějak divně tam inicializuješ ty časové proměnné. Když si normálně v běžném userspace naimplementuju CurrentTicks(), daří se mi to vyzkoušet takhle:
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <inttypes.h>
static const size_t BILLION = 1000000000;
static const size_t MILLION = 1000000;
static const uint32_t TIME_MASK = 0xffff;
static const uint32_t TIME_MAX = TIME_MASK + 1;
static const struct timespec PAUSE = {
.tv_sec = 0,
.tv_nsec = 500000000,
};
static uint32_t CurrentTick() {
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
perror("clock error");
exit(1);
}
const uint64_t ns = (uint64_t)ts.tv_sec * BILLION +
(uint64_t)ts.tv_nsec;
return (uint32_t)(ns / MILLION) & TIME_MASK;
}
static void funkce1(int chTime) {
if (chTime > 0) {
uint32_t t0 = CurrentTick();
do {
/* Tady začíná časovaný kód. */
printf("\tZbývá: %d ms, CurrentTick: %u ms\n", chTime, t0);
struct timespec remaining;
if (nanosleep(&PAUSE, &remaining))
while (nanosleep(&remaining, &remaining));
/* Tady končí časovaný kód. */
const uint32_t t1 = CurrentTick();
chTime -= t1 > t0 ? t1 - t0 : TIME_MAX - t0 + t1;
t0 = t1;
} while (chTime > 0);
}
}
int main() {
const int times_sec[] = {1, 2, 4, 8, 16, 32, 64, 65, 66, 99};
for (size_t i = 0; i < sizeof(times_sec) / sizeof(int); ++i) {
printf("Spouštím časovač na %d s.\n", times_sec[i]);
funkce1(1000 * times_sec[i]);
}
return 0;
}
Tohle^^^ si můžeš rovnou spustit, sledovat, kdy čas přeteče, a zkoušet různé alternativy. Klíčové je, jak se v tom cyklu aktualizuje uplynulý čas.
Pokud by jedna iterace toho časovacího kódu trvala déle než 65536 milisekund, bude samozřejmě tohle řešení nepoužitelné a časování by se muselo řešit jinak.
Tiskni
Sdílej: