V Amsterdamu probíhá Open Source Summit Europe. Organizace Linux Foundation představuje novinky. Pod svá křídla převzala open source dokumentovou databázi DocumentDB.
Přesně před 34 lety, 25. srpna 1991, oznámil Linus Benedict Torvalds v diskusní skupině comp.os.minix, že vyvíjí (svobodný) operační systém (jako koníček, nebude tak velký a profesionální jako GNU) pro klony 386 (486), že začal v dubnu a během několika měsíců by mohl mít něco použitelného.
86Box, tj. emulátor retro počítačů založených na x86, byl vydán ve verzi 5.0. S integrovaným správcem VM. Na GitHubu jsou vedle zdrojových kódů ke stažení také připravené balíčky ve formátu AppImage.
Vláda Spojených států získala desetiprocentní podíl v americkém výrobci čipů Intel. Oznámili to podle agentur americký prezident Donald Trump a ministr obchodu Howard Lutnick. Společnost Intel uvedla, že výměnou za desetiprocentní podíl obdrží státní dotace v hodnotě 8,9 miliardy dolarů (zhruba 186 miliard Kč). Částka podle Intelu zahrnuje dříve přislíbené subvence 5,7 miliardy dolarů z programu CHIPS na podporu výroby čipů v USA,
… více »Organizace Apache Software Foundation (ASF) vydala verzi 27 integrovaného vývojového prostředí a vývojové platformy napsané v Javě NetBeans (Wikipedie). Přehled novinek na GitHubu. Instalovat lze také ze Snapcraftu a Flathubu.
Knihovna FFmpeg byla vydána ve verzi 8.0 „Huffman“. Přibyla mj. podpora hardwarově akcelerovaného kódování s využitím API Vulcan, viz seznam změn.
Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB) vydal Zprávu o stavu kybernetické bezpečnosti ČR za rok 2024 (pdf). V loňském roce NÚKIB evidoval dosud nejvíce kybernetických bezpečnostních incidentů s celkovým počtem 268. Oproti roku 2023 se však jedná pouze o drobný nárůst a závažnost dopadů evidovaných incidentů klesá již třetím rokem v řadě. V minulém roce NÚKIB evidoval pouze jeden velmi významný incident a významných incidentů bylo zaznamenáno 18, což oproti roku 2023 představuje pokles o více než polovinu.
Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie). Servo mimo jiné nově zvládne animované obrázky APNG a WebP.
Na chytré telefony a počítačové tablety v Rusku bude od začátku příštího měsíce povinné předinstalovávat státem podporovanou komunikační aplikaci MAX, která konkuruje aplikaci WhatsApp americké společnosti Meta Platforms. Oznámila to dnes ruská vláda. Ta by podle kritiků mohla aplikaci MAX používat ke sledování uživatelů. Ruská státní média obvinění ze špehování pomocí aplikace MAX popírají. Tvrdí, že MAX má méně oprávnění k přístupu k údajům o uživatelích než konkurenční aplikace WhatsApp a Telegram.
Společnost PINE64 stojící za telefony PinePhone nebo notebooky Pinebook publikovala na svém blogu srpnový souhrn novinek. Kvůli nedostatečnému zájmu byla ukončena výroba telefonů PinePhone Pro.
Řeším takový návrhový problém a hledám elegantní řešení v C++.
Obecně jde o to, že mám třídu (např. parser), jejíž instance přijímá události (někdo volá její metody), nějak je zpracovává a výsledky předává dál – volá metody jiného objektu (handler). Těch handlerů může být víc, implementují stejné rozhraní a uživatel je registruje před začátkem zpracování pomocí metody addHandler()
.
Napadá mě několik možností:
addHandler()
přidá handler do kolekce a pak budu místo handler->metoda()
volat for (auto handler : handlers) handler->metoda()
a tím se událost rozešle všem.addHandler()
nebude v parseru a parser bude sám schopný pracovat jen s jedním handlerem. Pokud jich bude potřeba víc, vytvoří se proxy handler, který bude implementovat stejné rozhraní a postará se o rozeslání všem stejným způsobem jako v předchozím bodě.Ten handler může mít třeba deset metod, takže se mi to úplně nechce psát všechno ručně, navíc tenhle problém budu asi řešit opakovaně. Časem bych možná chtěl nějak lépe ošetřovat chyby (např. když by jeden handler vyhazoval výjimku, tak aby zpracování dat v ostatních pokračovalo dál a chyba se nějak zpracovala až na konci), ale pro začátek to může být tak, že první vyhozená výjimka zastaví všechno a zpracování skončí.
Přijde mi, že tohle musí být docela obvyklá úloha, snad i návrhový vzor nebo idiom… tak se mi nechce vynalézat kolo. Jak tohle řešíte vy?
P.S. To řešení pomocí maker může vypadat takhle:
#define handler for (auto ___h : handlers) ___h handler->metoda0(); handler->metoda1(a, b); handler->metoda2(a, b, c); ... handler->metoda9(x);
Což tak nějak s minimem úsilí řeší tenhle problém, ale moc nadšený z toho nejsem.
P.P.S. Případně takhle může vypadat kombinace toho makra a proxy:
class XYZContentHandler { public: virtual void abc(); virtual void def(int a); virtual void ghi(int a, int b); }; class XYZContentHandlerProxy : public XYZContentHandler { private: std::vector<std::shared_ptr<XYZContentHandler>> handlers; public: void addHandler(std::shared_ptr<XYZContentHandler> handler) { handlers.push_back(handler); } #define handler for (auto ___h : handlers) ___h void abc() override { handler->abc(); } void def(int a) override { handler->def(a); } void ghi(int a, int b) override { handler->ghi(a,b); } #undef handler };
Ale nejradši bych se zbavil toho ručně psaného kódu (proxy) a řešil to nějak obecně, genericky.
#include <iostream>
#include <memory>
#include <vector>
using std::vector;
using std::shared_ptr;
using std::make_shared;
using std::cerr;
using std::endl;
using std::forward;
struct ContentHandler {
virtual void handle_a(int x) = 0;
virtual void handle_b(int x, int y) = 0;
virtual void handle_c() = 0;
};
struct Foo: ContentHandler {
virtual void handle_a(int x) { cerr << "Foo::handle_a(" << x << ")" << endl; }
virtual void handle_b(int x, int y) { cerr << "Foo::handle_b(" << x << ", " << y << ")" << endl; }
virtual void handle_c() { cerr << "Foo::handle_c()" << endl; }
};
struct Bar: ContentHandler {
virtual void handle_a(int x) { cerr << "Bar::handle_a(" << x << ")" << endl; }
virtual void handle_b(int x, int y) { cerr << "Bar::handle_b(" << x << ", " << y << ")" << endl; }
virtual void handle_c() { cerr << "Bar::handle_c()" << endl; }
};
template <class R, class T, class ...Args>
void handle_fanout(vector<shared_ptr<T>>& handlers, R (T::*func)(Args...), Args &&... args) {
cerr << "Fanout to " << handlers.size() << " handlers:" << endl;
for (auto& handler : handlers) {
((*handler).*func)(forward<Args>(args)...);
}
}
int main() {
vector<shared_ptr<ContentHandler>> handlers;
handlers.push_back(make_shared<Foo>());
handlers.push_back(make_shared<Bar>());
handle_fanout(handlers, &ContentHandler::handle_a, 3);
handle_fanout(handlers, &ContentHandler::handle_b, 42, 9001);
handle_fanout(handlers, &ContentHandler::handle_c);
}
Je to trochu naprasené... předávání reference na vector
by se asi správně mělo nahradit nějakým range
nebo po staru párem iterátorů nebo podobně, ale nechtělo se mi to už řešit...
try-catch
a chycené výjimky by se někam vykopírovaly pro další zpracování.
Ale ošklivé to asi bude tak jako tak, výjimky jsou zkrátka zlo Ano, ale otázka je, jak to elegantně implementovat s minimem ručně psaného kódu (proxy) nebo for cyklů rozesetých všude možně. Např. v Javě bych to uměl udělat pomocí reflexe nebo anotací a anotačního procesoru. V jazycích s hygienickými makry si zase dovedu představit elegantní řešení založené na úpravě/generování AST.
Pokud bych omezil počet metod a všechno posílal přes jednu, tak si asi jen ušetřím práci na jednom místě a přidělám práci jinde. Místo prostého volání metod s 0 až N parametry by se musely vytvářet a předávat objekty. Jako API mi to nepřijde moc intuitivní – ten, kdo to bude volat, tak bude řešit otázku, jaké objekty tam může posílat a kde je má vzít (asi v nějaké továrně…) a ten, kdo bude ty události zpracovávat, bude zase řešit otázku, jaké všechny typy mu můžou přijít a jestli to je konečná množina… – místo toho, aby se člověk jednoduše podíval, jaké metody dané rozhraní obsahuje. A když bychom chtěli oddělit API a SPI, tak to bude taky asi horší (tohle zatím neřeším, protože je to jen interní třída, ne nějaké veřejné rozhraní, které by používal a implementoval někdo cizí).
V C++ se tomu zatím nejvíc blíží to Kralykovo řešení, ale taky to není ono – minimálně proto, že psát handle_fanout(handlers, &ContentHandler::handle_a, 3)
je výrazně otravnější než psát proxy.handle_a(3)
nemluvě o napovídání parametrů v IDE, které si s tím neporadí (ale aspoň kompilátor ty parametry zkontroluje a upozorní na chybu).
class XYZContentHandler { public: virtual ~XYZContentHandler() {} virtual void abc(); virtual void def(int a); virtual void ghi(int a, int b); }; class XYZContentHandlerProxy : public XYZContentHandler { private: std::vector<std::shared_ptr<XYZContentHandler>> handlers; public: void addHandler(std::shared_ptr<XYZContentHandler> handler) { handlers.push_back(handler); } template<typename Func, typename... Args> void handler_foreach(Func func, Args&&... args) { for (auto& h : handlers) { try { (h.get()->*func)(args...); // umyslne bez std::forward, nechceme, aby potom funkce udelala move z argumentu a rozbila tak dalsi handler } catch (...) { /* sezer vyjimku */ } } } void abc() override { handler_foreach(&XYZContentHandler::abc); } void def(int a) override { handler_foreach(&XYZContentHandler::def, a); } void ghi(int a, int b) override { handler_foreach(&XYZContentHandler::ghi, a, b); } };
Díky. Nahradil jsem tím to makro a přesunul to do znovupoužitelné třídy ProxyVector.
Pořád mi trochu vadí, že tam musím vyjmenovat všechny ty metody, které se mají přeposílat, ale to asi jinak nejde (bez nějakého generování kódu).
Tiskni
Sdílej: