Byla vydána nová verze 9.19 z Debianu vycházející linuxové distribuce DietPi pro (nejenom) jednodeskové počítače. Přehled novinek v poznámkách k vydání. Vypíchnout lze například nový balíček BirdNET-Go, tj. AI řešení pro nepřetržité monitorování a identifikaci ptáků.
Byla vydána nová verze 3.38 frameworku Flutter (Wikipedie) pro vývoj mobilních, webových i desktopových aplikací a nová verze 3.10 souvisejícího programovacího jazyka Dart (Wikipedie).
Organizace Apache Software Foundation (ASF) vydala verzi 28 integrovaného vývojového prostředí a vývojové platformy napsané v Javě NetBeans (Wikipedie). Přehled novinek na GitHubu. Instalovat lze také ze Snapcraftu a Flathubu.
Byl vydán Debian 13.2, tj. druhá opravná verze Debianu 13 s kódovým názvem Trixie. Řešeny jsou především bezpečnostní problémy, ale také několik vážných chyb. Instalační média Debianu 13 lze samozřejmě nadále k instalaci používat. Po instalaci stačí systém aktualizovat.
Google představil platformu Code Wiki pro rychlejší porozumění existujícímu kódu. Code Wiki pomocí AI Gemini udržuje průběžně aktualizovanou strukturovanou wiki pro softwarové repozitáře. Zatím jenom pro veřejné. V plánu je rozšíření Gemini CLI také pro soukromé a interní repozitáře.
V přihlašovací obrazovce LightDM KDE (lightdm-kde-greeter) byla nalezena a již opravena eskalace práv (CVE-2025-62876). Detaily v příspěvku na blogu SUSE Security.
Byla vydána nová verze 7.2 živé linuxové distribuce Tails (The Amnesic Incognito Live System), jež klade důraz na ochranu soukromí uživatelů a anonymitu. Tor Browser byl povýšen na verzi 15.0.1. Další novinky v příslušném seznamu.
Česká národní banka (ČNB) nakoupila digitální aktiva založená na blockchainu za milion dolarů (20,9 milionu korun). Na vytvořeném testovacím portfoliu, jehož součástí jsou bitcoin, stablecoiny navázané na dolar a tokenizované depozitum, chce získat praktickou zkušenost s držením digitálních aktiv. Portfolio nebude součástí devizových rezerv, uvedla dnes ČNB v tiskové zprávě.
Apple představil iPhone Pocket pro stylové přenášení iPhonu. iPhone Pocket vzešel ze spolupráce značky ISSEY MIYAKE a Applu a jeho tělo tvoří jednolitý 3D úplet, který uschová všechny modely iPhonu. iPhone Pocket s krátkým popruhem se prodává za 149,95 dolarů (USA) a s dlouhým popruhem za 229,95 dolarů (USA).
Byla vydána nová stabilní verze 7.7 webového prohlížeče Vivaldi (Wikipedie). Postavena je na Chromiu 142. Přehled novinek i s náhledy v příspěvku na blogu.
Řeším takový návrhový problém a hledám elegantní řešení v C++.
Obecně jde o to, že mám třídu (např. parser), jejíž instance přijímá události (někdo volá její metody), nějak je zpracovává a výsledky předává dál – volá metody jiného objektu (handler). Těch handlerů může být víc, implementují stejné rozhraní a uživatel je registruje před začátkem zpracování pomocí metody addHandler().
Napadá mě několik možností:
addHandler() přidá handler do kolekce a pak budu místo handler->metoda() volat for (auto handler : handlers) handler->metoda() a tím se událost rozešle všem.addHandler() nebude v parseru a parser bude sám schopný pracovat jen s jedním handlerem. Pokud jich bude potřeba víc, vytvoří se proxy handler, který bude implementovat stejné rozhraní a postará se o rozeslání všem stejným způsobem jako v předchozím bodě.Ten handler může mít třeba deset metod, takže se mi to úplně nechce psát všechno ručně, navíc tenhle problém budu asi řešit opakovaně. Časem bych možná chtěl nějak lépe ošetřovat chyby (např. když by jeden handler vyhazoval výjimku, tak aby zpracování dat v ostatních pokračovalo dál a chyba se nějak zpracovala až na konci), ale pro začátek to může být tak, že první vyhozená výjimka zastaví všechno a zpracování skončí.
Přijde mi, že tohle musí být docela obvyklá úloha, snad i návrhový vzor nebo idiom… tak se mi nechce vynalézat kolo. Jak tohle řešíte vy?
P.S. To řešení pomocí maker může vypadat takhle:
#define handler for (auto ___h : handlers) ___h handler->metoda0(); handler->metoda1(a, b); handler->metoda2(a, b, c); ... handler->metoda9(x);
Což tak nějak s minimem úsilí řeší tenhle problém, ale moc nadšený z toho nejsem.
P.P.S. Případně takhle může vypadat kombinace toho makra a proxy:
class XYZContentHandler {
public:
virtual void abc();
virtual void def(int a);
virtual void ghi(int a, int b);
};
class XYZContentHandlerProxy : public XYZContentHandler {
private:
std::vector<std::shared_ptr<XYZContentHandler>> handlers;
public:
void addHandler(std::shared_ptr<XYZContentHandler> handler) {
handlers.push_back(handler);
}
#define handler for (auto ___h : handlers) ___h
void abc() override { handler->abc(); }
void def(int a) override { handler->def(a); }
void ghi(int a, int b) override { handler->ghi(a,b); }
#undef handler
};
Ale nejradši bych se zbavil toho ručně psaného kódu (proxy) a řešil to nějak obecně, genericky.
#include <iostream>
#include <memory>
#include <vector>
using std::vector;
using std::shared_ptr;
using std::make_shared;
using std::cerr;
using std::endl;
using std::forward;
struct ContentHandler {
virtual void handle_a(int x) = 0;
virtual void handle_b(int x, int y) = 0;
virtual void handle_c() = 0;
};
struct Foo: ContentHandler {
virtual void handle_a(int x) { cerr << "Foo::handle_a(" << x << ")" << endl; }
virtual void handle_b(int x, int y) { cerr << "Foo::handle_b(" << x << ", " << y << ")" << endl; }
virtual void handle_c() { cerr << "Foo::handle_c()" << endl; }
};
struct Bar: ContentHandler {
virtual void handle_a(int x) { cerr << "Bar::handle_a(" << x << ")" << endl; }
virtual void handle_b(int x, int y) { cerr << "Bar::handle_b(" << x << ", " << y << ")" << endl; }
virtual void handle_c() { cerr << "Bar::handle_c()" << endl; }
};
template <class R, class T, class ...Args>
void handle_fanout(vector<shared_ptr<T>>& handlers, R (T::*func)(Args...), Args &&... args) {
cerr << "Fanout to " << handlers.size() << " handlers:" << endl;
for (auto& handler : handlers) {
((*handler).*func)(forward<Args>(args)...);
}
}
int main() {
vector<shared_ptr<ContentHandler>> handlers;
handlers.push_back(make_shared<Foo>());
handlers.push_back(make_shared<Bar>());
handle_fanout(handlers, &ContentHandler::handle_a, 3);
handle_fanout(handlers, &ContentHandler::handle_b, 42, 9001);
handle_fanout(handlers, &ContentHandler::handle_c);
}
Je to trochu naprasené... předávání reference na vector by se asi správně mělo nahradit nějakým range nebo po staru párem iterátorů nebo podobně, ale nechtělo se mi to už řešit...
try-catch a chycené výjimky by se někam vykopírovaly pro další zpracování.
Ale ošklivé to asi bude tak jako tak, výjimky jsou zkrátka zlo
Ano, ale otázka je, jak to elegantně implementovat s minimem ručně psaného kódu (proxy) nebo for cyklů rozesetých všude možně. Např. v Javě bych to uměl udělat pomocí reflexe nebo anotací a anotačního procesoru. V jazycích s hygienickými makry si zase dovedu představit elegantní řešení založené na úpravě/generování AST.
Pokud bych omezil počet metod a všechno posílal přes jednu, tak si asi jen ušetřím práci na jednom místě a přidělám práci jinde. Místo prostého volání metod s 0 až N parametry by se musely vytvářet a předávat objekty. Jako API mi to nepřijde moc intuitivní – ten, kdo to bude volat, tak bude řešit otázku, jaké objekty tam může posílat a kde je má vzít (asi v nějaké továrně…) a ten, kdo bude ty události zpracovávat, bude zase řešit otázku, jaké všechny typy mu můžou přijít a jestli to je konečná množina… – místo toho, aby se člověk jednoduše podíval, jaké metody dané rozhraní obsahuje. A když bychom chtěli oddělit API a SPI, tak to bude taky asi horší (tohle zatím neřeším, protože je to jen interní třída, ne nějaké veřejné rozhraní, které by používal a implementoval někdo cizí).
V C++ se tomu zatím nejvíc blíží to Kralykovo řešení, ale taky to není ono – minimálně proto, že psát handle_fanout(handlers, &ContentHandler::handle_a, 3) je výrazně otravnější než psát proxy.handle_a(3) nemluvě o napovídání parametrů v IDE, které si s tím neporadí (ale aspoň kompilátor ty parametry zkontroluje a upozorní na chybu).
class XYZContentHandler {
public:
virtual ~XYZContentHandler() {}
virtual void abc();
virtual void def(int a);
virtual void ghi(int a, int b);
};
class XYZContentHandlerProxy : public XYZContentHandler {
private:
std::vector<std::shared_ptr<XYZContentHandler>> handlers;
public:
void addHandler(std::shared_ptr<XYZContentHandler> handler) {
handlers.push_back(handler);
}
template<typename Func, typename... Args>
void handler_foreach(Func func, Args&&... args)
{
for (auto& h : handlers)
{
try {
(h.get()->*func)(args...); // umyslne bez std::forward, nechceme, aby potom funkce udelala move z argumentu a rozbila tak dalsi handler
}
catch (...) { /* sezer vyjimku */ }
}
}
void abc() override { handler_foreach(&XYZContentHandler::abc); }
void def(int a) override { handler_foreach(&XYZContentHandler::def, a); }
void ghi(int a, int b) override { handler_foreach(&XYZContentHandler::ghi, a, b); }
};
Díky. Nahradil jsem tím to makro a přesunul to do znovupoužitelné třídy ProxyVector.
Pořád mi trochu vadí, že tam musím vyjmenovat všechny ty metody, které se mají přeposílat, ale to asi jinak nejde (bez nějakého generování kódu).
Tiskni
Sdílej: