3D software Blender byl vydán ve verzi 4.5 s prodlouženou podporou. Podrobnosti v poznámkách k vydání. Videopředstavení na YouTube.
Open source webový aplikační framework Django slaví 20. narozeniny.
V Brestu dnes začala konference vývojářů a uživatelů linuxové distribuce Debian DebConf25. Na programu je řada zajímavých přednášek. Sledovat je lze online.
Před 30 lety, tj. 14. července 1995, se začala používat přípona .mp3 pro soubory s hudbou komprimovanou pomocí MPEG-2 Audio Layer 3.
Výroba 8bitových domácích počítačů Commodore 64 byla ukončena v dubnu 1994. Po více než 30 letech byl představen nový oficiální Commodore 64 Ultimate (YouTube). S deskou postavenou na FPGA. Ve 3 edicích v ceně od 299 dolarů a plánovaným dodáním v říjnu a listopadu letošního roku.
Společnost Hugging Face ve spolupráci se společností Pollen Robotics představila open source robota Reachy Mini (YouTube). Předobjednat lze lite verzi za 299 dolarů a wireless verzi s Raspberry Pi 5 za 449 dolarů.
Dnes v 17:30 bude oficiálně vydána open source počítačová hra DOGWALK vytvořena v 3D softwaru Blender a herním enginu Godot. Release party proběhne na YouTube od 17:00.
McDonald's se spojil se společností Paradox a pracovníky nabírá také pomocí AI řešení s virtuální asistentkou Olivii běžící na webu McHire. Ian Carroll a Sam Curry se na toto AI řešení blíže podívali a opravdu je překvapilo, že se mohli přihlásit pomocí jména 123456 a hesla 123456 a získat přístup k údajům o 64 milionech uchazečů o práci.
Byla vydána (𝕏) červnová aktualizace aneb nová verze 1.102 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.102 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Byla vydána nová verze 2.4.64 svobodného multiplatformního webového serveru Apache (httpd). Řešeno je mimo jiné 8 bezpečnostních chyb.
Řeším takový návrhový problém a hledám elegantní řešení v C++.
Obecně jde o to, že mám třídu (např. parser), jejíž instance přijímá události (někdo volá její metody), nějak je zpracovává a výsledky předává dál – volá metody jiného objektu (handler). Těch handlerů může být víc, implementují stejné rozhraní a uživatel je registruje před začátkem zpracování pomocí metody addHandler()
.
Napadá mě několik možností:
addHandler()
přidá handler do kolekce a pak budu místo handler->metoda()
volat for (auto handler : handlers) handler->metoda()
a tím se událost rozešle všem.addHandler()
nebude v parseru a parser bude sám schopný pracovat jen s jedním handlerem. Pokud jich bude potřeba víc, vytvoří se proxy handler, který bude implementovat stejné rozhraní a postará se o rozeslání všem stejným způsobem jako v předchozím bodě.Ten handler může mít třeba deset metod, takže se mi to úplně nechce psát všechno ručně, navíc tenhle problém budu asi řešit opakovaně. Časem bych možná chtěl nějak lépe ošetřovat chyby (např. když by jeden handler vyhazoval výjimku, tak aby zpracování dat v ostatních pokračovalo dál a chyba se nějak zpracovala až na konci), ale pro začátek to může být tak, že první vyhozená výjimka zastaví všechno a zpracování skončí.
Přijde mi, že tohle musí být docela obvyklá úloha, snad i návrhový vzor nebo idiom… tak se mi nechce vynalézat kolo. Jak tohle řešíte vy?
P.S. To řešení pomocí maker může vypadat takhle:
#define handler for (auto ___h : handlers) ___h handler->metoda0(); handler->metoda1(a, b); handler->metoda2(a, b, c); ... handler->metoda9(x);
Což tak nějak s minimem úsilí řeší tenhle problém, ale moc nadšený z toho nejsem.
P.P.S. Případně takhle může vypadat kombinace toho makra a proxy:
class XYZContentHandler { public: virtual void abc(); virtual void def(int a); virtual void ghi(int a, int b); }; class XYZContentHandlerProxy : public XYZContentHandler { private: std::vector<std::shared_ptr<XYZContentHandler>> handlers; public: void addHandler(std::shared_ptr<XYZContentHandler> handler) { handlers.push_back(handler); } #define handler for (auto ___h : handlers) ___h void abc() override { handler->abc(); } void def(int a) override { handler->def(a); } void ghi(int a, int b) override { handler->ghi(a,b); } #undef handler };
Ale nejradši bych se zbavil toho ručně psaného kódu (proxy) a řešil to nějak obecně, genericky.
#include <iostream>
#include <memory>
#include <vector>
using std::vector;
using std::shared_ptr;
using std::make_shared;
using std::cerr;
using std::endl;
using std::forward;
struct ContentHandler {
virtual void handle_a(int x) = 0;
virtual void handle_b(int x, int y) = 0;
virtual void handle_c() = 0;
};
struct Foo: ContentHandler {
virtual void handle_a(int x) { cerr << "Foo::handle_a(" << x << ")" << endl; }
virtual void handle_b(int x, int y) { cerr << "Foo::handle_b(" << x << ", " << y << ")" << endl; }
virtual void handle_c() { cerr << "Foo::handle_c()" << endl; }
};
struct Bar: ContentHandler {
virtual void handle_a(int x) { cerr << "Bar::handle_a(" << x << ")" << endl; }
virtual void handle_b(int x, int y) { cerr << "Bar::handle_b(" << x << ", " << y << ")" << endl; }
virtual void handle_c() { cerr << "Bar::handle_c()" << endl; }
};
template <class R, class T, class ...Args>
void handle_fanout(vector<shared_ptr<T>>& handlers, R (T::*func)(Args...), Args &&... args) {
cerr << "Fanout to " << handlers.size() << " handlers:" << endl;
for (auto& handler : handlers) {
((*handler).*func)(forward<Args>(args)...);
}
}
int main() {
vector<shared_ptr<ContentHandler>> handlers;
handlers.push_back(make_shared<Foo>());
handlers.push_back(make_shared<Bar>());
handle_fanout(handlers, &ContentHandler::handle_a, 3);
handle_fanout(handlers, &ContentHandler::handle_b, 42, 9001);
handle_fanout(handlers, &ContentHandler::handle_c);
}
Je to trochu naprasené... předávání reference na vector
by se asi správně mělo nahradit nějakým range
nebo po staru párem iterátorů nebo podobně, ale nechtělo se mi to už řešit...
try-catch
a chycené výjimky by se někam vykopírovaly pro další zpracování.
Ale ošklivé to asi bude tak jako tak, výjimky jsou zkrátka zlo Ano, ale otázka je, jak to elegantně implementovat s minimem ručně psaného kódu (proxy) nebo for cyklů rozesetých všude možně. Např. v Javě bych to uměl udělat pomocí reflexe nebo anotací a anotačního procesoru. V jazycích s hygienickými makry si zase dovedu představit elegantní řešení založené na úpravě/generování AST.
Pokud bych omezil počet metod a všechno posílal přes jednu, tak si asi jen ušetřím práci na jednom místě a přidělám práci jinde. Místo prostého volání metod s 0 až N parametry by se musely vytvářet a předávat objekty. Jako API mi to nepřijde moc intuitivní – ten, kdo to bude volat, tak bude řešit otázku, jaké objekty tam může posílat a kde je má vzít (asi v nějaké továrně…) a ten, kdo bude ty události zpracovávat, bude zase řešit otázku, jaké všechny typy mu můžou přijít a jestli to je konečná množina… – místo toho, aby se člověk jednoduše podíval, jaké metody dané rozhraní obsahuje. A když bychom chtěli oddělit API a SPI, tak to bude taky asi horší (tohle zatím neřeším, protože je to jen interní třída, ne nějaké veřejné rozhraní, které by používal a implementoval někdo cizí).
V C++ se tomu zatím nejvíc blíží to Kralykovo řešení, ale taky to není ono – minimálně proto, že psát handle_fanout(handlers, &ContentHandler::handle_a, 3)
je výrazně otravnější než psát proxy.handle_a(3)
nemluvě o napovídání parametrů v IDE, které si s tím neporadí (ale aspoň kompilátor ty parametry zkontroluje a upozorní na chybu).
class XYZContentHandler { public: virtual ~XYZContentHandler() {} virtual void abc(); virtual void def(int a); virtual void ghi(int a, int b); }; class XYZContentHandlerProxy : public XYZContentHandler { private: std::vector<std::shared_ptr<XYZContentHandler>> handlers; public: void addHandler(std::shared_ptr<XYZContentHandler> handler) { handlers.push_back(handler); } template<typename Func, typename... Args> void handler_foreach(Func func, Args&&... args) { for (auto& h : handlers) { try { (h.get()->*func)(args...); // umyslne bez std::forward, nechceme, aby potom funkce udelala move z argumentu a rozbila tak dalsi handler } catch (...) { /* sezer vyjimku */ } } } void abc() override { handler_foreach(&XYZContentHandler::abc); } void def(int a) override { handler_foreach(&XYZContentHandler::def, a); } void ghi(int a, int b) override { handler_foreach(&XYZContentHandler::ghi, a, b); } };
Díky. Nahradil jsem tím to makro a přesunul to do znovupoužitelné třídy ProxyVector.
Pořád mi trochu vadí, že tam musím vyjmenovat všechny ty metody, které se mají přeposílat, ale to asi jinak nejde (bez nějakého generování kódu).
Tiskni
Sdílej: