Úřad pro ochranu hospodářské soutěže zahajuje sektorové šetření v oblasti mobilních telekomunikačních služeb poskytovaných domácnostem v České republice. Z poznatků získaných na základě prvotní analýzy provedené ve spolupráci s Českým telekomunikačním úřadem (ČTÚ) ÚOHS zjistil, že vzájemné vztahy mezi operátory je zapotřebí detailněji prověřit kvůli možné nefunkčnosti některých aspektů konkurence na trzích, na nichž roste tržní podíl klíčových hráčů a naopak klesá význam nezávislých virtuálních operátorů.
Různé audity bezpečnostních systémů pařížského muzea Louvre odhalily závažné problémy v oblasti kybernetické bezpečnosti a tyto problémy přetrvávaly déle než deset let. Jeden z těchto auditů, který v roce 2014 provedla francouzská národní agentura pro kybernetickou bezpečnost, například ukázal, že heslo do kamerového systému muzea bylo „Louvre“. 😀
Z upstreamu GNOME Mutter byl zcela odstraněn backend X11. GNOME 50 tedy poběží už pouze nad Waylandem. Aplikace pro X11 budou využívat XWayland.
Byl publikován plán na odstranění XSLT z webových prohlížečů Chrome a Chromium. S odstraněním XSLT souhlasí také vývojáři Firefoxu a WebKit. Důvodem jsou bezpečnostní rizika a klesající využití v moderním webovém vývoji.
Desktopové prostředí LXQt (Lightweight Qt Desktop Environment, Wikipedie) vzniklé sloučením projektů Razor-qt a LXDE bylo vydáno ve verzi 2.3.0. Přehled novinek v poznámkách k vydání.
Organizace Open Container Initiative (OCI) (Wikipedie), projekt nadace Linux Foundation, vydala Runtime Specification 1.3 (pdf), tj. novou verzi specifikace kontejnerového běhového prostředí. Hlavní novinkou je podpora FreeBSD.
Nový open source router Turris Omnia NG je v prodeji. Aktuálně na Allegro, Alternetivo, Discomp, i4wifi a WiFiShop.
Na YouTube a nově také na VHSky byly zveřejněny sestříhané videozáznamy přednášek z letošního OpenAltu.
Jednou za rok otevírá společnost SUSE dveře svých kanceláří široké veřejnosti. Letos je pro vás otevře 26. listopadu v 16 hodin v pražském Karlíně. Vítáni jsou všichni, kdo se chtějí dozvědět více o práci vývojářů, prostředí ve kterém pracují a o místní firemní kultuře. Můžete se těšit na krátké prezentace, které vám přiblíží, na čem inženýři v Praze pracují, jak spolupracují se zákazníky, partnery i studenty, proč mají rádi open source a co
… více »Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za říjen (YouTube).
data.dat:
0.417 2.3 0.441 3.44 0.521 10.95 0.54 16.5 0.554 19.4 0.587 27.9 0.6 37 0.627 45.7 0.659 67.8 0.697 107.2 0.76 234 0.83 814a vykreslení grafu provádím příkazem
plot 'data.dat' with points, 'data.dat' smooth bezier. Ovšem výsledkem je takovéto "ujeté proložení grafu".
Díky za nápady.
Hmm, tak popravdě nevím, jestli lze proložení beziérovou křivkou nějak ovlivnit a narychlo jsem nic takového neobjevil. Ale mohl byste si zkusit pohrát s fit (v gnuplotu help fit). Zkusil bych prokládat buď posunutou exponencielou nebo něčím jako x na n-tou.
na fit nemam tak dobry matematický aparát, abych byl schopen zjistit, jaká rovnice je schopna vyjádřit voltampérovou charakteristiku diody (je to laborka z fyziky,
Taky nemám potřebný matematický aparát na odvození, ale Shockleyho rovnici diody uvádí každá učebnice elektroniky. Takže ano, kvadratická funkce nebude ideální - grafem uvedené funkce je zcela zřejmě exponenciála.
plot 'data.dat' u (1/$1):(log($2))Vyleze z toho priblizne linearni zavislost. Potom sem definoval funkci
f(x)=a*x + ba pomoci
fit jsem spachal regresi:
fit f(x) 'data.dat' u (1/$1):(log($2)) via a,bDostal sem parametry a,b. No a pak sem definoval novou fci:
f2(x) = exp(a*(1/x)+b)a vykreslil:
replot f2(x)...no...ehm...vysledek nic moc. Nemam zadnou paru o voltamperovych charakteristikach diod, sem chemik a tadyto je oblibena metoda jak provadet regresi pri vypoctu ruznych termodynamickych velicin v zavislosti na teplote, treba tenze par, parcialni molarni dotatkova gibbsova energie v nekonecnem zredeni (to je zverstvo co
). Sou to veliciny exponencielne zavisle na teplote. Jinak se tomu taky rika zobrazeni ve van't Hoff souradnicich.
Jako funkci f2(x) bych zvolil:
y = a*exp(bx)
kde b=1/(25*10^-3) a a=nějaký hodně malý číslo (10^-14) 
Tak při parametrech: a = 1e-14; b = 40e-3 a funkci y = a*exp(x/b) vznikne proložením pomocí fit zcela odpovídající graf.
a = 1e-14; b = 40e-3 f(x)=a*exp(x/b) fit f(x) 'data.dat' via a,b plot 'data.dat', f(x)A graf fce je úplně mimo, začíná někde kolem x=10
f(x)=0.00138451*exp(15.9964*x) plot 'data.dat', f(x)
. Graf jsem exportoval do svg a upravil v inkscape
Tiskni
Sdílej: