Raspberry Pi Connect, tj. oficiální služba Raspberry Pi pro vzdálený přístup k jednodeskovým počítačům Raspberry Pi z webového prohlížeče, byla vydána v nové verzi 2.5. Nejedná se už o beta verzi.
Google zveřejnil seznam 1272 projektů (vývojářů) od 185 organizací přijatých do letošního, již jednadvacátého, Google Summer of Code. Plánovaným vylepšením v grafických a multimediálních aplikacích se věnuje článek na Libre Arts.
Byla vydána (𝕏) dubnová aktualizace aneb nová verze 1.100 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.100 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Open source platforma Home Assistant (Demo, GitHub, Wikipedie) pro monitorování a řízení inteligentní domácnosti byla vydána v nové verzi 2025.5.
OpenSearch (Wikipedie) byl vydán ve verzi 3.0. Podrobnosti v poznámkách k vydání. Jedná se o fork projektů Elasticsearch a Kibana.
PyXL je koncept procesora, ktorý dokáže priamo spúštat Python kód bez nutnosti prekladu ci Micropythonu. Podľa testov autora je pri 100 MHz približne 30x rýchlejší pri riadeni GPIO nez Micropython na Pyboard taktovanej na 168 MHz.
Grafana (Wikipedie), tj. open source nástroj pro vizualizaci různých metrik a s ní související dotazování, upozorňování a lepší porozumění, byla vydána ve verzi 12.0. Přehled novinek v aktualizované dokumentaci.
Raspberry Pi OS, oficiální operační systém pro Raspberry Pi, byl vydán v nové verzi 2025-05-06. Přehled novinek v příspěvku na blogu Raspberry Pi a poznámkách k vydání. Pravděpodobně se jedná o poslední verzi postavenou na Debianu 12 Bookworm. Následující verze by již měla být postavena na Debianu 13 Trixie.
Richard Stallman dnes v Liberci přednáší o svobodném softwaru a svobodě v digitální společnosti. Od 16:30 v aule budovy G na Technické univerzitě v Liberci. V anglickém jazyce s automaticky generovanými českými titulky. Vstup je zdarma i pro širokou veřejnost.
sudo-rs, tj. sudo a su přepsáné do programovacího jazyka Rust, nahradí v Ubuntu 25.10 klasické sudo. V plánu je také přechod od klasických coreutils k uutils coreutils napsaných v Rustu.
$ free -m total used free shared buffers cached Mem: 3756 3693 62 0 38 958 -/+ buffers/cache: 2696 1059 Swap: 4290 71 4219 $ vmstat -S M 1 procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---- r b swpd free buff cache si so bi bo in cs us sy id wa 1 0 71 105 34 918 21 24 267 75 92 121 11 6 77 6Je mi jasné že je mnohem užitečnější odswapovat paměť na kterou se dlouho nešáhlo a uvolněné místo použít na diskovou cache, navíc toto chování dá poměrně dobře omezit nastavením /proc/sys/vm/swappiness na nulu... Jde ale nějak zjistit jak je vůbec tato cache používána? Protože po vynuceném vyprázdnění (diskové?) cache
sync ; echo 3 > /proc/sys/vm/drop_cachesZůstane v cachi ještě poměrně dost dat (958M před, 355M po). Ve výpisu vmstat -S M -s vidím 354 M swap cache. Co jsem tak pochopil z linux-vmm, tak swap cache je tabulka stránek které byly nahrány ze swapu do ram a ještě nebyly modifikovány, takže je lze uvolnit bez IO. A na tohle je potřeba 354M? Navíc tato položka nezmizí když dám swapoff -a...?! Na jedné stránce jsem četl názor že jde jen o špatně pojmenovanou položku ve vmstat... Otázka tedy zní. Jak zjistit podrobnosti o tom co se nachází v cache? Jak nastavit tlak na používání jednotlivých částí a jak jí celou vyprázdnit?
Položka swap cache z vmstat je stejný údaj jako cache z free. A podle mě obsahuje nejen zápisovou diskovou cache, ale i čtecí, a drop_caches pouze zapíše špinavé stránky, takže číslo, co ti zbylo, jsou nacachované stránky, do kterých se dosud nic nezapsalo a pokud se nebudou používat, jádro je zahodí na úkor stránek více používaných.
Linux ale nerozlišuje mezi stránkami diskové cache a ostatními, co se týče jejich zahazování. Všechny druhy stránek mají společnou úroveň swappiness. Takže při nešťastném zatížení může disková cache vytlačovat třeba kód procesů. Pokud aplikace ví, že data přečtená/zapsaná znovu nebudou potřeba, je možné napovědět jádru pomocí DIRECT_IO na otevřeném deskriptoru.
Nevim na co ti ten nb presne slouzi, ale nehces ten swap uplne vypnout kdyz mas 4G? Ja mam 4G a swap nepouzivam.Programuju v Javě :) Bez swapu by brzy zasáhl OOM zabiják.
Taky se mi nelibilo, ze s tim porad pracoval i kdyz mel pamet volnou.Když si snížím swappines, tak se systém chová celkem rozumně. Čas od času ho ale při nedostatku paměti popadne takový "IO záchvat" že něco musím sestřelit abych mohl pokračovat v práci... Mě by akorát zajímalo co se v danou chvíli děje...? V iotop akorát vidím že kopa procesů čeká na io. To systém načítá soubory mapované do ram (kód aplikací), nebo se tak moc swapuje?
Jako alternativu pripadne nabizim takovou peknou feature od Googlu co pridali do jadra (presne nevim jak se to jmenuje), ale je to v podstate RAM disk s kompresi ktery se pouziva jako swap.Jo, o tom jsem četl v Jaderných novinách... S touto myšlenkou (komprimovat data před vyhozením z ram) již bylo vytvořeno víc patchů... Jeden projekt je například zde: http://code.google.com/p/compcache/ Díky za nápad... Určitě vyzkouším...
Programuju v Javě :) Bez swapu by brzy zasáhl OOM zabiják.Huh, tak to je dost slabá výmluva. Netvrdím, že nelze při práci přesáhnout 4G, ale zase vím, že to je na spoustu projektů až dost.
Když si snížím swappines, tak se systém chová celkem rozumně. Čas od času ho ale při nedostatku paměti popadne takový "IO záchvat" že něco musím sestřelit abych mohl pokračovat v práci... Mě by akorát zajímalo co se v danou chvíli děje...? V iotop akorát vidím že kopa procesů čeká na io. To systém načítá soubory mapované do ram (kód aplikací), nebo se tak moc swapuje?Oboje, proto je lepší se na swap vykašlat. Pokud není paměť a navíc nutíte systém něco dělat tak se to dostane do takového kolečka kde to furt přehazuje stránky mezi diskem a RAM, ať už se jedná o swap nebo o cache.
Tiskni
Sdílej: