Společnost Hugging Face ve spolupráci se společností Pollen Robotics představila open source robota Reachy Mini (YouTube). Předobjednat lze lite verzi za 299 dolarů a wireless verzi s Raspberry Pi 5 za 449 dolarů.
Dnes v 17:30 bude oficiálně vydána open source počítačová hra DOGWALK vytvořena v 3D softwaru Blender a herním enginu Godot. Release party proběhne na YouTube od 17:00.
McDonald's se spojil se společností Paradox a pracovníky nabírá také pomocí AI řešení s virtuální asistentkou Olivii běžící na webu McHire. Ian Carroll a Sam Curry se na toto AI řešení blíže podívali a opravdu je překvapilo, že se mohli přihlásit pomocí jména 123456 a hesla 123456 a získat přístup k údajům o 64 milionech uchazečů o práci.
Byla vydána (𝕏) červnová aktualizace aneb nová verze 1.102 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.102 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Byla vydána nová verze 2.4.64 svobodného multiplatformního webového serveru Apache (httpd). Řešeno je mimo jiné 8 bezpečnostních chyb.
Společnost xAI na síti 𝕏 představila Grok 4, tj. novou verzi svého AI LLM modelu Grok.
Ministerstvo vnitra odhalilo závažný kyberincident v IT systému resortu. Systém, do kterého se dostal útočník bez oprávnění, byl odpojen a nedošlo k odcizení dat [𝕏].
Před rokem byla streamovací služba HBO Max přejmenována na Max. Dle managementu slovo HBO v názvu nebylo důležité. Včera byl Max přejmenován zpět na HBO Max. Kolik milionů dolarů to stálo? 😂
Byla vydána nová major verze 8.0.0 svobodného systému pro detekci a prevenci průniků a monitorování bezpečnosti počítačových sítí Suricata (Wikipedie). Přehled novinek v oficiálním oznámení a v aktualizované dokumentaci.
Mastodon (Wikipedie) - sociální síť, která není na prodej - byl vydán ve verzi 4.4. Přehled novinek s náhledy a videi v oznámení na blogu.
Pak je složitost algoritmu skutečně lineární (i když jsou slova neomezené na délce)... O(L + m) kde L je součet všech délek řetězců a m je konstanta.
To je klasický příklad zavádějící formulace. Podobným způsobem byste totiž snadno došel k závěru, že každý algoritmus je (přinejhorším) lineární, pouze stačí vhodně zvolit, vůči čemu má být lineární… :-)
U třídících algoritmů se časová složitost váže k počtu tříděných elementů. V tomto případě je to L, což je součet délek vstupních řetězců.
Tak to tedy není. Nezlobte se na mne, ale počet řazených elementů je počet řazených řetězců. Neřadíte znaky, řadíte řetězce (tím spíš, že jste se minule sám zmiňoval o tom, že ve skutečnosti nebudete manipulovat se samotnými řetězci, ale pouze s pointery na ně).
Je to jen násobek dvou čísel, platí: O(n*c) = O(n)Tak především součin a ne násobek - a to souvisí s tím zamlžováním, o kterém jsem mluvil, ono totiž O(kn) je ve skutečnosti něco podstatně jiného než O(n). Prohlášením nepohodlných kritérií rozsahu problému za konstanty a vhodnou volbou parametru, vůči němuž budeme časovou složitost vyjadřovat, lze prohlásit za lineární jakýkoli algoritmus… Pokud má mít ale takové tvrzení nenulovou informační hodnotu, musí být jasně řečeno, vůči kterému parametru je to lineární, jaké základní operace považujete za konstatní v čase a které parametry rozsahu problému považujete za konstanty.
n
.
Tohle je ale právě princip níže odkazovanýho radix-sortu. Pro třídění řetězců různé délky pak lze využít zobecněného radix-sortu. Popis algoritmu nalezneš v: Hudec: Programovací tecniky, ČVUT 2004. Složitost algoritmu je O(n + L), kde L je součet délek všech řazených slov.
Podle toho, co tady doposud zaznělo, předpokládám, že vám jde o skupinu algoritmů, kterým se říká radixsort.
Tiskni
Sdílej: