Apple představil iPhone Pocket pro stylové přenášení iPhonu. iPhone Pocket vzešel ze spolupráce značky ISSEY MIYAKE a Applu a jeho tělo tvoří jednolitý 3D úplet, který uschová všechny modely iPhonu. iPhone Pocket s krátkým popruhem se prodává za 149,95 dolarů (USA) a s dlouhým popruhem za 229,95 dolarů (USA).
Byla vydána nová stabilní verze 7.7 webového prohlížeče Vivaldi (Wikipedie). Postavena je na Chromiu 142. Přehled novinek i s náhledy v příspěvku na blogu.
Společnost Epic Games vydala verzi 5.7 svého proprietárního multiplatformního herního enginu Unreal Engine (Wikipedie). Podrobný přehled novinek v poznámkách k vydání.
Intel vydal 30 upozornění na bezpečnostní chyby ve svých produktech. Současně vydal verzi 20251111 mikrokódů pro své procesory.
Byla vydána říjnová aktualizace aneb nová verze 1.106 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.106 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Canonical pro své zákazníky, předplatitele Ubuntu Pro, prodloužil podporu Ubuntu LTS z 12 let na 15 let (Legacy add-on). Týká se verzí od 14.04 (Trusty Tahr).
Homebrew (Wikipedie), správce balíčků pro macOS a od verze 2.0.0 také pro Linux, byl vydán ve verzi 5.0.0. Nově je oficiálně podporován Linux ARM64/AArch64. Na stránce Homebrew Formulae lze procházet seznamem balíčků. K dispozici jsou také různé statistiky.
Byla vydána verze 10 dnes již multiplatformního open source frameworku .NET (Wikipedie). Přehled novinek v příspěvku na blogu Microsoftu. Další informace v poznámkách k vydání na GitHubu nebo v přednáškách na právě probíhající konferenci .NET Conf 2025.
Rodina hardwaru služby Steam se začátkem roku 2026 rozroste. Steam Deck doplní nový Steam Controller, herní PC Steam Machine se SteamOS s KDE Plasmou a bezdrátový VR headset s vlastními ovladači Steam Frame.
Amazon Web Services (AWS) oznámil (en) výstavbu Fastnetu – strategického transatlantického optického kabelu, který propojí americký stát Maryland s irským hrabstvím Cork a zajistí rychlý a spolehlivý přenos cloudových služeb a AI přes Atlantik. Fastnet je odpovědí na rostoucí poptávku po rychlém a spolehlivém přenosu dat mezi kontinenty. Systém byl navržen s ohledem na rostoucí provoz související s rozvojem umělé inteligence a
… více »Pak je složitost algoritmu skutečně lineární (i když jsou slova neomezené na délce)... O(L + m) kde L je součet všech délek řetězců a m je konstanta.
To je klasický příklad zavádějící formulace. Podobným způsobem byste totiž snadno došel k závěru, že každý algoritmus je (přinejhorším) lineární, pouze stačí vhodně zvolit, vůči čemu má být lineární… :-)
U třídících algoritmů se časová složitost váže k počtu tříděných elementů. V tomto případě je to L, což je součet délek vstupních řetězců.
Tak to tedy není. Nezlobte se na mne, ale počet řazených elementů je počet řazených řetězců. Neřadíte znaky, řadíte řetězce (tím spíš, že jste se minule sám zmiňoval o tom, že ve skutečnosti nebudete manipulovat se samotnými řetězci, ale pouze s pointery na ně).
Je to jen násobek dvou čísel, platí: O(n*c) = O(n)Tak především součin a ne násobek - a to souvisí s tím zamlžováním, o kterém jsem mluvil, ono totiž O(kn) je ve skutečnosti něco podstatně jiného než O(n). Prohlášením nepohodlných kritérií rozsahu problému za konstanty a vhodnou volbou parametru, vůči němuž budeme časovou složitost vyjadřovat, lze prohlásit za lineární jakýkoli algoritmus… Pokud má mít ale takové tvrzení nenulovou informační hodnotu, musí být jasně řečeno, vůči kterému parametru je to lineární, jaké základní operace považujete za konstatní v čase a které parametry rozsahu problému považujete za konstanty.
. Řekl bych, že zmatek do toho zavádíš ty. Vstupy (délky) řetězců sice vždy budou konečné, ale žádnou konstantou omezené nejsou. Přirozených čísel je taky nekonečně mnoho, ale žádné není nekonečné.
Když mluvíš o složitosti algoritmu, musíš říct vůči čemu tu složitost počítáš. Když se mluví o třídících algoritmech, tak pokud není uvedeno jinak, implicitně se myslí počet tříděných prvků (v našem případě řetězců).
n.
Tohle je ale právě princip níže odkazovanýho radix-sortu. Pro třídění řetězců různé délky pak lze využít zobecněného radix-sortu. Popis algoritmu nalezneš v: Hudec: Programovací tecniky, ČVUT 2004. Složitost algoritmu je O(n + L), kde L je součet délek všech řazených slov.
Podle toho, co tady doposud zaznělo, předpokládám, že vám jde o skupinu algoritmů, kterým se říká radixsort.
Dále se praví, že je to algoritmus s lineární složitostí, ale pouze pokud m << n (je výrazně menší než n). Jak může mít algoritmus lineární složitost jen v některých případech? Vždyť i když bude prvků abecedy třeba milion, pořád s přibývajícím n poroste čas lineárně.
Tiskni
Sdílej: