Vývoj linuxové distribuce Clear Linux (Wikipedie) vyvíjené společností Intel a optimalizováné pro jejich procesory byl oficiálně ukončen.
Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie).
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 12.0 (Mastodon). Forgejo je fork Gitei.
Nová čísla časopisů od nakladatelství Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 155 (pdf) a Hello World 27 (pdf).
Hyprland, tj. kompozitor pro Wayland zaměřený na dláždění okny a zároveň grafické efekty, byl vydán ve verzi 0.50.0. Podrobný přehled novinek na GitHubu.
Patrick Volkerding oznámil před dvaatřiceti lety vydání Slackware Linuxu 1.00. Slackware Linux byl tenkrát k dispozici na 3,5 palcových disketách. Základní systém byl na 13 disketách. Kdo chtěl grafiku, potřeboval dalších 11 disket. Slackware Linux 1.00 byl postaven na Linuxu .99pl11 Alpha, libc 4.4.1, g++ 2.4.5 a XFree86 1.3.
Ministerstvo pro místní rozvoj (MMR) jako první orgán státní správy v Česku spustilo takzvaný „bug bounty“ program pro odhalování bezpečnostních rizik a zranitelných míst ve svých informačních systémech. Za nalezení kritické zranitelnosti nabízí veřejnosti odměnu 1000 eur, v případě vysoké závažnosti je to 500 eur. Program se inspiruje přístupy běžnými v komerčním sektoru nebo ve veřejné sféře v zahraničí.
Vláda dne 16. července 2025 schválila návrh nového jednotného vizuálního stylu státní správy. Vytvořilo jej na základě veřejné soutěže studio Najbrt. Náklady na přípravu návrhu a metodiky činily tři miliony korun. Modernizovaný dvouocasý lev vychází z malého státního znaku. Vizuální styl doprovází originální písmo Czechia Sans.
Vyhledávač DuckDuckGo je podle webu DownDetector od 2:15 SELČ nedostupný. Opět fungovat začal na několik minut zhruba v 15:15. Další služby nesouvisející přímo s vyhledáváním, jako mapy a AI asistent jsou dostupné. Pro některé dotazy během výpadku stále funguje zobrazování například textu z Wikipedie.
Více než 600 aplikací postavených na PHP frameworku Laravel je zranitelných vůči vzdálenému spuštění libovolného kódu. Útočníci mohou zneužít veřejně uniklé konfigurační klíče APP_KEY (např. z GitHubu). Z více než 260 000 APP_KEY získaných z GitHubu bylo ověřeno, že přes 600 aplikací je zranitelných. Zhruba 63 % úniků pochází z .env souborů, které často obsahují i další citlivé údaje (např. přístupové údaje k databázím nebo cloudovým službám).
Jak řešíte situace, kdy máte v databázi číselníkové tabulky (obsahující číselné ID, jedinečný textový kód a případně další atributy), další tabulky, které se na ně odkazují přes ta číselná ID a chcete nad tím psát SELECTy (neprocedurální, čisté SQL), ve kterých potřebujete hodnoty z těch číselníků?
Jsem zvyklý dělat JOIN s číselníkovou tabulkou a v SELECTu používat ty textové kódy. Dávat tam magické konstanty v podobě těch číselných ID považuji za prasárnu a předčasnou optimalizaci – bude se to špatně číst a bude to příliš křehké – takové programy mají tendenci se rozbíjet a chovat se divně, nepředvídatelně.
Pokud byste přeci jen došli k tomu, že JOIN je nepřijatelně pomalý, jak byste to řešili jinak?
Konstanty asi na většině systémů v SQL (neprocedurálním) použít nepůjdou. Dá se udělat funkce (IMMUTABLE
), která vrací číselné ID, a v rámci SELECTu ji zavolat.
Taky by k těm magickým konstantám šlo psát komentáře. To by trochu pomohlo, ale ne moc – program by byl stále moc křehký a nespolehlivý.
Kdyby ty komentáře měly nějakou pevnou strukturu a byly strojově čitelné, šlo by si k tomu napsat skripty, které by zkontrolovaly, že jsou tam správné magické konstanty, případně by aspoň usnadnily nalezení míst, kde je potřeba hodnotu změnit. Příklad:
SELECT * FROM tabulka WHERE stav = 384 -- xxx:tabulka_stavů:kód_stavu
Napadlo mě, že by na to šlo jít i opačně a SQL skript před provedením prohnat nějakým preprocesorem (buď v době kompilace nebo při prvním načtení v době běhu), což by umožňovalo v něm používat konstanty případně i další makra.
Zkusil jsem si, jak to vypadá v m4 a cpp.
CPP – soubor s makry:
#define KONSTANTA_1 1337
CPP – dotaz:
#include "makra.sql" SELECT * FROM tabulka WHERE stav = KONSTANTA_1 -- tohle chceme nahradit AND popis <> 'KONSTANTA_1' -- tohle se nemá nahradit AND popis NOT LIKE '%KONSTANTA_1%' -- dtto
CPP – výsledek:
# 1 "dotaz.sql" # 1 "<built-in>" # 1 "<command-line>" # 1 "/usr/include/stdc-predef.h" 1 3 4 # 1 "<command-line>" 2 # 1 "dotaz.sql" # 1 "makra.sql" 1 # 2 "dotaz.sql" 2 SELECT * FROM tabulka WHERE stav = 1337 AND popis <> 'KONSTANTA_1' AND popis NOT LIKE '%KONSTANTA_1%'
M4 – soubor s makry:
define(KONSTANTA_1, 1337)
M4 – dotaz:
include(`makra.m4') SELECT * FROM tabulka WHERE stav = KONSTANTA_1 -- tohle chceme nahradit AND popis <> '`KONSTANTA_1'' -- tohle se nemá nahradit AND popis NOT LIKE '%`KONSTANTA_1'%' - dtto
M4 – výstup:
SELECT * FROM tabulka WHERE stav = 1337 AND popis <> 'KONSTANTA_1' AND popis NOT LIKE '%KONSTANTA_1%'
Ale není to úplně ono. CPP je určené pro jazyk C a tady funguje spíš náhodou. A hlavně by to chtělo nějaká neinvazivní makra, která nenarušují syntaxi SQL – aby fungovalo zvýraznění syntaxe a případně další nástroje i nad zdrojovým souborem.
Použili byste CPP nebo M4? Případně jak? Nebo jiný preprocesor? Nebo ty funkce? Nebo byste zůstali u JOINů? (mnou preferovaná varianta – i když ty preprocesory mne trochu lákají, protože to skýtá i jiné možnosti…)
Řešili byste tuhle otázku jinak v různých DBMS? (PostgreSQL, MariaDB/MySQL, Oracle)
$result = $flupdo->select('*')->from('tabulka') ->whereZCiselniku('stav =', 'KONSTANTA_1') ->where('popis <> ?', 'KONSTANTA_1') ->where('popis NOT LIKE CONCAT("%", ?, "%")', 'KONSTANTA_1');Výsledný SQL dotaz by pak byl:
SELECT * FROM tabulka WHERE stav = (SELECT id FROM cislenik WHERE popis = ? LIMIT 1) AND popis <> ? AND popis NOT LIKE CONCAT("%", ?, "%")(A samozřejmě také odpovídající pole s parametry.)
Na tyto věci používám program sed ( případně Perl nebo Ruby jako stream filter přepínač -p). Zejména operátor s///. Používal jsem to jako mockovací systém pro SQL, kdy jsem potřeboval nahradit jméno tabulky jinou - mockem. S trochou formátovací kultury se s tím dala napsat pravidla i pro kontextové nahrazení. Například čtení bude z tabulky původní, ale zápis jde do jiné tabulky (syntaxe regexp ala perl pro zvýšení čitelnosti):
s/my_table/for_writing/g s/((from)|(join)\s+)for_writing/my_table/g
Předpokadem byla formátovací kultura používat explicitně join klíčové slovo a nepoužívat join skrytý v klausuli where. Je potřeba tomu preprocesingu trošku pomoci. Kompletní generické parsování SQL by nebyl vůbec triviální úkol. A rozhodně bych se nesnažil o validaci SQL vlastním kódem.
Otázka zda zabránit substituci v řetězcích je spíše otázkou: "Co když takovou substituci budete chtít?" Pokud si matně pamatuji, řešil jsem problém potlačení substituce explicitně:
where X.x = 'my_table' -- @no_substitute@ opravdu zde nechci substituci
/@no_substitute@/ b # přeskočí řádky označené @no_substitute@
Pokud budete chtít zamezit kolizi vyberte si dostatečně divoké jméno proměnné tak aby nekolidovala. Např:
stav = @@KONSTANTA_1@@
Tak divoký řetězec snad nikde mít nikdy nebudete. Ale pamatuji si že se mi substituce v řetězcích hodila. Myslím, že to bylo nějaké SQL s tabulkovými metadaty.
Pokud má být transparentní nahrazení hodnotou z číselníku tak pro Oracle by mohlo zafungovat něco takového:
s/@(\w+).(\w+)/(select ID from $1 where txt_id='$2')/g # @ = označení substituce
V perlu/ruby by se dalo i případně zkontrolovat zda dotyčná tabulka a záznam existuje a že se do skriptu neinjektujeme nesmyslný kód.
Tiskni
Sdílej: