FFmpeg nechal kvůli porušení autorských práv odstranit z GitHubu jeden z repozitářů patřících čínské technologické firmě Rockchip. Důvodem bylo porušení LGPL ze strany Rockchipu. Rockchip byl FFmpegem na porušování LGPL upozorněn již téměř před dvěma roky.
K dispozici je nový CLI nástroj witr sloužící k analýze běžících procesů. Název je zkratkou slov why-is-this-running, 'proč tohle běží'. Klade si za cíl v 'jediném, lidsky čitelném, výstupu vysvětlit odkud daný spuštěný proces pochází, jak byl spuštěn a jaký řetězec systémů je zodpovědný za to, že tento proces právě teď běží'. Witr je napsán v jazyce Go.
Yazi je správce souborů běžící v terminálu. Napsán je v programovacím jazyce Rust. Podporuje asynchronní I/O operace. Vydán byl v nové verzi 25.12.29. Instalovat jej lze také ze Snapcraftu.
Od soboty do úterý probíhá v Hamburku konference 39C3 (Chaos Communication Congress) věnovaná také počítačové bezpečnosti nebo hardwaru. Program (jiná verze) slibuje řadu zajímavých přednášek. Streamy a záznamy budou k dispozici na media.ccc.de.
Byl představen nový Xserver Phoenix, kompletně od nuly vyvíjený v programovacím jazyce Zig. Projekt Phoenix si klade za cíl být moderní alternativou k X.Org serveru.
XLibre Xserver byl 21. prosince vydán ve verzi 25.1.0, 'winter solstice release'. Od založení tohoto forku X.Org serveru se jedná o vůbec první novou minor verzi (inkrementovalo se to druhé číslo v číselném kódu verze).
Wayback byl vydán ve verzi 0.3. Wayback je "tak akorát Waylandu, aby fungoval Xwayland". Jedná se o kompatibilní vrstvu umožňující běh plnohodnotných X11 desktopových prostředí s využitím komponent z Waylandu. Cílem je nakonec nahradit klasický server X.Org, a tím snížit zátěž údržby aplikací X11.
Byla vydána verze 4.0.0 programovacího jazyka Ruby (Wikipedie). S Ruby Box a ZJIT. Ruby lze vyzkoušet na webové stránce TryRuby. U příležitosti 30. narozenin, první veřejná verze Ruby 0.95 byla oznámena 21. prosince 1995, proběhl redesign webových stránek.
Všem čtenářkám a čtenářům AbcLinuxu krásné Vánoce.
Byla vydána nová verze 7.0 linuxové distribuce Parrot OS (Wikipedie). S kódovým názvem Echo. Jedná se o linuxovou distribuci založenou na Debianu a zaměřenou na penetrační testování, digitální forenzní analýzu, reverzní inženýrství, hacking, anonymitu nebo kryptografii. Přehled novinek v příspěvku na blogu.
(Had si cestu najde...
) Jenom mě trošku zarazila věta "jak je videt, polymorfismus funguje skvele" - kde přesně je tam vidět polymorfní chování? (Ano, je možné, že jsem puntičkář, vím to...
)
>>> class trida1: ... pass ... >>> class trida2 (trida1): ... pass ... >>> obj = trida2() >>> isinstance(obj, trida1) True >>> # jak je videt, polymorfismus funguje skvele(
obj je instancí trida2, která dědí z trida1, proto isinstance vrací True - tady to vidím já)
.
Jinak ja osobne teda na prekladu jedne stranky standardni dokumentace http://docs.python.org/lib/built-in-funcs.html nevidim zadny prinos a nechapu smysl tohoto serialu.
class A:
def x(self):
print "h"
class B:
def x(self):
print "f"
#a tady trochu "polymorfisujeme"
A().x()
B().x()
)
Python polymorfismus neumí, jako dynamický jazyk ho nepotřebuje.
Lze emulovat introspekcí.
Polymorfismus – odkazovaný objekt se chová podle toho, jaký je jeho skutečný typ. Pokud několik objektů poskytuje stejné rozhraní, pracuje se s nimi stejným způsobem, ale jejich konkrétní chování se liší. V praxi se tato vlastnost projevuje např. tak, že na místo, kde je očekávána instance nějaké třídy, můžeme dosadit i instanci libovolné její podtřídy (třídy, která přímo či nepřímo z této třídy dědí), která se může chovat jinak, než by se chovala instance rodičovské třídy, ovšem v rámci mantinelů, daných popisem rozhraní.No a v tom mém příkladě máš 2 objekty, rozdílného skutečného typu, poskytující stejné rozhraní, s kterými se stejně pracuje, ale jejich konkrétní chování se liší. Ještě bych mírně dovysvětlil ten příklad s dědičností v té citaci. To je příklad spíše typický pro staticky typované jazyky, kdy se kompilátor, aby byl spokojenej, musí dozvědět, zda nějaké typy jsou kompatibilní (ve smyslu stejného rozhraní). A k tomu se dá využít dědičnost a nebo třeba v javě interfaces, které s dědičností vůbec nesouvisí. No a pokud ten jazyk nepoužívá statickou typovou kontrolu, tak to samozřejmě kompilátoru sdělovat nemusíš. Ale to neznamená, že v daném jazyce polymorfismus neexistuje. Prostě polymorfismus se statickou typovou kontrolou (nebo s dědičností) souvisí velmi vzdáleně.
"Polymorfismus objektu souvisí s definicí rozhraní a jeho zjednodušením. Je to známo také pod názvem přetížení objektu (funkce, metody, operátoru). Přesnější a jasnější definice polymorfismu je zde: http://www.cs.vsb.cz/saloun/educ/C_CPP/kurs_CPP/ch02s03.html Jeho podstata spočívá, že jeden název metody (funkce, operátoru) může sdílet několik metod, které se liší pčtem parametrů nebo jejich datovými typy. Jazyk pak sám podle předaných parametrů použije správnou. "Tak to si pleteš s ad-hoc polymorfismem, který je jen jednou z inkarnací polymorfismu obecně.
On hovoří o subtyping polymorfismu.
Je pravda, že ad-hoc polymorfismus ani tak moc polymorfismem není - spíš je to statický vícenásobný dispatch podle přesného typu parametrů a nějakou tou mnohotvárností se moc nevyznačuje ani volající funkce (leda, že ta by byla polymorfní parametricky, ale to už by bylo úplně jiné kafe celkově
), ani ty volané.
Python samozřejmě polymorfismus podporuje, jinak by kód volající metody objektu nemohl být použitelný s objektem předem neznámé třídy porporujícím dané rozhraní.
. To že Python podporuje prostory jmen a v nich může mít odkazy na funkce/metody/promenne stejneho nazvu neni polymorfismus. Dynamicky jazyk polymorfismus, jako vlastnost jazyka, nema a nepotrebuje,
"To že Python podporuje prostory jmen a v nich může mít odkazy na funkce/metody/promenne stejneho nazvu neni polymorfismus."Ne, to polymorfismus není. Polymorfismus je schopnost jediné definice kódu pracovat s daty různých typů. To ale Python bezesporu (díky pozdní vazbě volání metod) umí, pokud dotyčný kód manipuluje se svými parametry prostřednictvím definovaných rozhraní.
S datovými typy polimorfismus souvisí dost úzce, viz první věta tvé citace.Však já netvrdím, že s datovými typy nesouvisí, ale tvrdím, že nesouvisí se statickou typovou kontrolou. No a zbytek viz Kyosuke. Ty si pod pojmem polymorfismus představuješ "overloading - přetěžování", což ti teda na základě wikipedie uznám jako jeden z typů polymorfismu, ikdyž stím moc niterně nesouhlasím
. Nicméně tvrdím, že když se řekne v OOP polymorfismus, tak je chybou (nebo je to minimálně matoucí) mluvit o přetěžování alias overloadingu.
class A:
def x(self):
print "h"
class B:
def x(self):
print "f"
for z in [ A(), B()]:
z.x()
x() a druha treba yable jako y() , pak objekt
co je obe splnuje, by byl IMHO kandidat na moznost uplatneni polymorfni chovani.
(Student nejsem, ale pripomina mi to trochu Freuda (viz. polymorfne perverzni chovani)
) o mnoha aspektech polymorfismu a nic takovéhohle tam nefigurovalo.
pi = [kosočtverec, čárka]
for elem in pi:
elem.nakresli()
Metoda nakresli() je jeden interface, který se pro různé typy postará o
příslušnou akci.
a = 5 #celé číslo
b = 5.2 #reálné číslo
cisla = [a, b]
for x in cisla:
print x.__div__(2) #metoda vyděldvěma()
Metoda vyděldvěma() udělá jinou akci pro integer (dělí celočíselně) a jinou akci pro float (dělí "reálně"). A
je to polymorfismus, že jo? Velmi podobně by to vypadalo i v céčku, že? Jen
s trochu jinou syntaxí. A co jaderné volání, které zjistí IP adresu síťovky?
Je to polymorfismus, když pro různé síťovky (drátové i bezdrátové) od
různých výrobců existuje jeden interface? A co funkce sinus? Je polymorfní, když na základě různých argumentů
dělá různé akce a vrací různé výsledky? A co bitová negace? Kolik zrnek
písku už je hromada?
Tiskni
Sdílej: