Digg (Wikipedie), "místo, kde můžete sdílet a objevovat to nejlepší z internetu – a nejen to", je zpět. Ve veřejné betě.
Po .deb balíčcích Mozilla nově poskytuje také .rpm balíčky Firefoxu Nightly.
Vývojové prostředí IntelliJ IDEA slaví 25. narozeniny (YouTube).
Vedení společnosti NVIDIA údajně povolilo použití milionů knih ze známého 'warez' archivu Anna's Archive k výcviku umělé inteligence, ačkoliv vědělo, že archiv tyto knihy nezískal legální cestou. Žaloba, ve které se objevují i citace interních dokumentů společnosti NVIDIA, tvrdí, že NVIDIA přímo kontaktovala Anna's Archive a požadovala vysokorychlostní přístup k datům knihovny.
Grafický správce balíčků Myrlyn pro SUSE a openSUSE, původně YQPkg, dospěl do stabilní verze 1.0.0. Postaven je nad libzypp a Qt 6. Projekt začal na SUSE Hack Weeku 24.
Vývojáři se podařilo vytvořit patch pro Wine, díky kterému je možné na linuxovém stroji nainstalovat a spustit Adobe Photoshop (testováno s verzemi Photoshopu PS2021 a PS2025). Dalším patchem se podařilo umožnit dokonce instalaci téměř celého Adobe Creative Cloud Collection 2023, vyjma aplikací Adobe XD a Adobe Fresco. Patch řeší kompatibilitu s windowsovými subsystémy MSHTML - jádrem prohlížeče Internet exporer, a MSXML3 - parserem
… více »Hackeři zaútočili na portál veřejných zakázek a vyřadili ho z provozu. Systém, ve kterém musí být ze zákona sdíleny informace o veřejných zakázkách, se ministerstvo pro místní rozvoj (MMR) nyní pokouší co nejdříve zprovoznit. Úřad o tom informoval na svém webu a na sociálních sítích. Portál slouží pro sdílení informací mezi zadavateli a dodavateli veřejných zakázek.
Javascriptová knihovna jQuery (Wikipedie) oslavila 20. narozeniny, John Resig ji představil v lednu 2006 na newyorském BarCampu. Při této příležitosti byla vydána nová major verze 4.0.0.
Singularity je rootkit ve formě jaderného modulu (Linux Kernel Module), s otevřeným zdrojovým kódem dostupným pod licencí MIT. Tento rootkit je určený pro moderní linuxová jádra 6.x a poskytuje své 'komplexní skryté funkce' prostřednictvím hookingu systémových volání pomocí ftrace. Pro nadšence je k dispozici podrobnější popis rootkitu na blogu autora, případně v článku na LWN.net. Projekt je zamýšlen jako pomůcka pro bezpečnostní experty a výzkumníky, takže instalujte pouze na vlastní nebezpečí a raději pouze do vlastních strojů 😉.
Iconify je seznam a galerie kolekcí vektorových open-source ikon, ke stažení je přes 275000 ikon z více jak dvou set sad. Tento rovněž open-source projekt dává vývojářům k dispozici i API pro snadnou integraci svobodných ikon do jejich projektů.
(Had si cestu najde...
) Jenom mě trošku zarazila věta "jak je videt, polymorfismus funguje skvele" - kde přesně je tam vidět polymorfní chování? (Ano, je možné, že jsem puntičkář, vím to...
)
>>> class trida1: ... pass ... >>> class trida2 (trida1): ... pass ... >>> obj = trida2() >>> isinstance(obj, trida1) True >>> # jak je videt, polymorfismus funguje skvele(
obj je instancí trida2, která dědí z trida1, proto isinstance vrací True - tady to vidím já)
.
Jinak ja osobne teda na prekladu jedne stranky standardni dokumentace http://docs.python.org/lib/built-in-funcs.html nevidim zadny prinos a nechapu smysl tohoto serialu.
class A:
def x(self):
print "h"
class B:
def x(self):
print "f"
#a tady trochu "polymorfisujeme"
A().x()
B().x()
)
Python polymorfismus neumí, jako dynamický jazyk ho nepotřebuje.
Lze emulovat introspekcí.
Polymorfismus – odkazovaný objekt se chová podle toho, jaký je jeho skutečný typ. Pokud několik objektů poskytuje stejné rozhraní, pracuje se s nimi stejným způsobem, ale jejich konkrétní chování se liší. V praxi se tato vlastnost projevuje např. tak, že na místo, kde je očekávána instance nějaké třídy, můžeme dosadit i instanci libovolné její podtřídy (třídy, která přímo či nepřímo z této třídy dědí), která se může chovat jinak, než by se chovala instance rodičovské třídy, ovšem v rámci mantinelů, daných popisem rozhraní.No a v tom mém příkladě máš 2 objekty, rozdílného skutečného typu, poskytující stejné rozhraní, s kterými se stejně pracuje, ale jejich konkrétní chování se liší. Ještě bych mírně dovysvětlil ten příklad s dědičností v té citaci. To je příklad spíše typický pro staticky typované jazyky, kdy se kompilátor, aby byl spokojenej, musí dozvědět, zda nějaké typy jsou kompatibilní (ve smyslu stejného rozhraní). A k tomu se dá využít dědičnost a nebo třeba v javě interfaces, které s dědičností vůbec nesouvisí. No a pokud ten jazyk nepoužívá statickou typovou kontrolu, tak to samozřejmě kompilátoru sdělovat nemusíš. Ale to neznamená, že v daném jazyce polymorfismus neexistuje. Prostě polymorfismus se statickou typovou kontrolou (nebo s dědičností) souvisí velmi vzdáleně.
"Polymorfismus objektu souvisí s definicí rozhraní a jeho zjednodušením. Je to známo také pod názvem přetížení objektu (funkce, metody, operátoru). Přesnější a jasnější definice polymorfismu je zde: http://www.cs.vsb.cz/saloun/educ/C_CPP/kurs_CPP/ch02s03.html Jeho podstata spočívá, že jeden název metody (funkce, operátoru) může sdílet několik metod, které se liší pčtem parametrů nebo jejich datovými typy. Jazyk pak sám podle předaných parametrů použije správnou. "Tak to si pleteš s ad-hoc polymorfismem, který je jen jednou z inkarnací polymorfismu obecně.
On hovoří o subtyping polymorfismu.
Je pravda, že ad-hoc polymorfismus ani tak moc polymorfismem není - spíš je to statický vícenásobný dispatch podle přesného typu parametrů a nějakou tou mnohotvárností se moc nevyznačuje ani volající funkce (leda, že ta by byla polymorfní parametricky, ale to už by bylo úplně jiné kafe celkově
), ani ty volané.
Python samozřejmě polymorfismus podporuje, jinak by kód volající metody objektu nemohl být použitelný s objektem předem neznámé třídy porporujícím dané rozhraní.
. To že Python podporuje prostory jmen a v nich může mít odkazy na funkce/metody/promenne stejneho nazvu neni polymorfismus. Dynamicky jazyk polymorfismus, jako vlastnost jazyka, nema a nepotrebuje,
"To že Python podporuje prostory jmen a v nich může mít odkazy na funkce/metody/promenne stejneho nazvu neni polymorfismus."Ne, to polymorfismus není. Polymorfismus je schopnost jediné definice kódu pracovat s daty různých typů. To ale Python bezesporu (díky pozdní vazbě volání metod) umí, pokud dotyčný kód manipuluje se svými parametry prostřednictvím definovaných rozhraní.
S datovými typy polimorfismus souvisí dost úzce, viz první věta tvé citace.Však já netvrdím, že s datovými typy nesouvisí, ale tvrdím, že nesouvisí se statickou typovou kontrolou. No a zbytek viz Kyosuke. Ty si pod pojmem polymorfismus představuješ "overloading - přetěžování", což ti teda na základě wikipedie uznám jako jeden z typů polymorfismu, ikdyž stím moc niterně nesouhlasím
. Nicméně tvrdím, že když se řekne v OOP polymorfismus, tak je chybou (nebo je to minimálně matoucí) mluvit o přetěžování alias overloadingu.
class A:
def x(self):
print "h"
class B:
def x(self):
print "f"
for z in [ A(), B()]:
z.x()
x() a druha treba yable jako y() , pak objekt
co je obe splnuje, by byl IMHO kandidat na moznost uplatneni polymorfni chovani.
(Student nejsem, ale pripomina mi to trochu Freuda (viz. polymorfne perverzni chovani)
) o mnoha aspektech polymorfismu a nic takovéhohle tam nefigurovalo.
pi = [kosočtverec, čárka]
for elem in pi:
elem.nakresli()
Metoda nakresli() je jeden interface, který se pro různé typy postará o
příslušnou akci.
a = 5 #celé číslo
b = 5.2 #reálné číslo
cisla = [a, b]
for x in cisla:
print x.__div__(2) #metoda vyděldvěma()
Metoda vyděldvěma() udělá jinou akci pro integer (dělí celočíselně) a jinou akci pro float (dělí "reálně"). A
je to polymorfismus, že jo? Velmi podobně by to vypadalo i v céčku, že? Jen
s trochu jinou syntaxí. A co jaderné volání, které zjistí IP adresu síťovky?
Je to polymorfismus, když pro různé síťovky (drátové i bezdrátové) od
různých výrobců existuje jeden interface? A co funkce sinus? Je polymorfní, když na základě různých argumentů
dělá různé akce a vrací různé výsledky? A co bitová negace? Kolik zrnek
písku už je hromada?
Tiskni
Sdílej: