Byla vydána (Mastodon, 𝕏) první RC verze GIMPu 3.2. Přehled novinek v oznámení o vydání. Podrobně v souboru NEWS na GitLabu.
Eugen Rochko, zakladatel Mastodonu, tj. sociální sítě, která není na prodej, oznámil, že po téměř 10 letech odstupuje z pozice CEO a převádí vlastnictví ochranné známky a dalších aktiv na neziskovou organizaci Mastodon.
Byla vydána nová major verze 5.0 svobodného 3D softwaru Blender. Přehled novinek i s náhledy a videi v obsáhlých poznámkách k vydání. Videopředstavení na YouTube.
Cloudflare, tj. společnost poskytující "cloudové služby, které zajišťují bezpečnost, výkon a spolehlivost internetových aplikací", má výpadek.
Letos se uskuteční již 11. ročník soutěže v programování Kasiopea. Tato soutěž, (primárně) pro středoškoláky, nabízí skvělou příležitost procvičit logické myšlení a dozvědět se něco nového ze světa algoritmů – a to nejen pro zkušené programátory, ale i pro úplné začátečníky. Domácí kolo proběhne online od 22. 11. do 7. 12. 2025 a skládá se z 9 zajímavých úloh různé obtížnosti. Na výběru programovacího jazyka přitom nezáleží – úlohy jsou
… více »Byla vydána nová verze 2.52.0 distribuovaného systému správy verzí Git. Přispělo 94 vývojářů, z toho 33 nových. Přehled novinek v příspěvku na blogu GitHubu a v poznámkách k vydání.
VKD3D-Proton byl vydán ve verzi 3.0. Jedná se fork knihovny vkd3d z projektu Wine pro Proton. Knihovna slouží pro překlad volání Direct3D 12 na Vulkan. V přehledu novinek je vypíchnuta podpora AMD FSR 4 (AMD FidelityFX Super Resolution 4).
Poštovní klient Thunderbird byl vydán v nové verzi 145.0. Podporuje DNS přes HTTPS nebo Microsoft Exchange skrze Exchange Web Services. Ukončena byla podpora 32bitového Thunderbirdu pro Linux.
U příležitosti státního svátku 17. listopadu probíhá na Steamu i GOG.com již šestý ročník Czech & Slovak Games Week aneb týdenní oslava a také slevová akce českých a slovenských počítačových her.
Byla vydána nová verze 9.19 z Debianu vycházející linuxové distribuce DietPi pro (nejenom) jednodeskové počítače. Přehled novinek v poznámkách k vydání. Vypíchnout lze například nový balíček BirdNET-Go, tj. AI řešení pro nepřetržité monitorování a identifikaci ptáků.
Paní docentka Alena Lukasová, která tuto problematiku vyučuje na Ostravské univerzitě, velmi dobře vystihuje místa, kde zpomalit nebo kde podat praktický příklad.
Formální (také matematická) logika je vědní obor, který se snaží formalizovat okolní svět do takového tvaru, aby se s ním dalo dále pracovat (zejména sledovat dedukce - usuzování). Je zřejmé, že je nutno vše zjednodušit, a proto se zavádějí různé modely. Pro matematiky je velmi výhodná výroková (založená na dvouhodnotové pravdivosti - na rozdíl od fuzzy logiky), informatiky bude zajímat predikátová a klauzurní logika.
Po první kapitole, jež představuje úvod do znalostí a jejich reprezentace (vzhledem ke zbytku knihy je tato problematika brána dosti stručně), začíná první část knihy, která se zabývá výrokovou logikou. Hned po přečtení prvních stran jsem ke svému potěšení zjistil, že se jedná o formální studijní materiál (Definice - Věta - Důkaz, Definice - Věta - Důkaz). Další, co mě potěšilo, byla téměř naprostá shoda s výkladem docenta Bělohlávka, který mě základům matematické logiky učil.
Výroková logika je tou nejjednodušší variantou, její vyjadřovací síla je tudíž nejmenší. Každý výrok se pomocí logických spojek snažíme ve správném tvaru zapsat do formulí a ty pak dále studovat. Můžeme zjišťovat pravdivost formule při jejím ohodnocení, zkoumat splnitelnost (tautologie, kontradikce) formule (například tabulkovou metodou) nebo převádět formuli do normálních tvarů (konjunktivní, disjunktivní). Právě jsem shrnul téma druhé kapitoly.
Třetí kapitola zavádí důležitý pojem důkazu ve výrokové logice, který poskytuje mechanizmus (ať už přímý nebo nepřímý) odvození platnosti (tautologičnosti) formule. Na základě znalostní báze (axiomů) a rezolučního odvozovacího pravidla jsme schopni rozhodnout o platnosti, aniž bychom studovali ohodnocení formule. V závěru kapitoly je pak popsána tablová důkazová metoda.
Velice důsledně jsou popsány tři nejpoužívanější axiomatické systémy (Gentzenovský, Klauzulární a Hilbertovský). Věnuje se jim čtvrtá kapitola. Při konstrukci důkazů je nutno získat trochu cviku, a proto je v této kapitole velké množství příkladů. Máme za sebou zhruba třetinu knihy, nyní se budeme věnovat predikátové logice.
Predikátová logika je svým způsobem rozšířením logiky výrokové. Do korektně vytvářených formulí definice přidává nové symboly (kvantifikátory) - generalizační a existenční, proměnné (které zde obsahují prvky z univerza), konstanty, funktory a predikátové symboly. Vyjadřovací schopnost predikátové logiky je mnohem vyšší, daní je pak složitější práce s takto utvořenými formulemi. Druhá třetina knihy se nese v podobném duchu, jako u výrokové logiky. Týká se ale logiky predikátové.
Asi nejzajímavější je poslední třetina, která je věnována klauzurní logice, jež je přechodovým stupněm mezi logikou predikátovou a logickým programovacím v jazyku PROLOG. Po přečtení kapitoly čtenář získá základní znalosti, jak funguje interpret jazyka PROLOG, kapitola však není návodem, jak v tomto jazyce programovat. V operačním systému Linux však funguje mnoho implementací PROLOGU (například GNU PROLOG), a tak není problém si vše vyzkoušet na počítači.
Knihu mohu jen doporučit. Nejen, že je profesionálně zpracovaná, ale spolu s bezchybnou a úhlednou sazbou je radost ji číst. Na závěr bych rád vyřešil jednu jednoduchou úlohu z první části knihy (výroková logika), abyste si mohli udělat obrázek, o čem tady celou dobu píši.
Převeďte formuli do konjunktivní normální normy c -› (a v b):
Řešení:
Vidíme, že řešení (6) je zároveň také v úplné disjuntní normální formě.
| Název | Formální logika v umělé inteligenci |
| Autoři | Alena Lukasová |
| Vydal | Computer Press |
| ISBN | 80-251-0023-5 |
| Datum vydání | 2003 |
| Počet stran | 270 |
| Doporučená cena | 199 Kč / 299 Sk |
Nástroje: Tisk bez diskuse
Tiskni
Sdílej:
a | b | c | c -> (a v b) | ¬a ^ ¬b ^ c ---+---+---+--------------+------------- 0 | 0 | 0 | 1 | 0 0 | 0 | 1 | 0 | 1 0 | 1 | 0 | 1 | 0 0 | 1 | 1 | 1 | 0 1 | 0 | 0 | 1 | 0 1 | 0 | 1 | 1 | 0 1 | 1 | 0 | 1 | 0 1 | 1 | 1 | 1 | 0