Byla vydána beta verze openSUSE Leap 16. Ve výchozím nastavení s novým instalátorem Agama.
Devadesátková hra Brány Skeldalu prošla portací a je dostupná na platformě Steam. Vyšel i parádní blog autora o portaci na moderní systémy a platformy včetně Linuxu.
Lidi dělají divné věci. Například spouští Linux v Excelu. Využít je emulátor RISC-V mini-rv32ima sestavený jako knihovna DLL, která je volaná z makra VBA (Visual Basic for Applications).
Revolut nabídne neomezený mobilní tarif za 12,50 eur (312 Kč). Aktuálně startuje ve Velké Británii a Německu.
Společnost Amazon miliardáře Jeffa Bezose vypustila na oběžnou dráhu první várku družic svého projektu Kuiper, který má z vesmíru poskytovat vysokorychlostní internetové připojení po celém světě a snažit se konkurovat nyní dominantnímu Starlinku nejbohatšího muže planety Elona Muska.
Poslední aktualizací začal model GPT-4o uživatelům příliš podlézat. OpenAI jej tak vrátila k předchozí verzi.
Google Chrome 136 byl prohlášen za stabilní. Nejnovější stabilní verze 136.0.7103.59 přináší řadu novinek z hlediska uživatelů i vývojářů. Podrobný přehled v poznámkách k vydání. Opraveno bylo 8 bezpečnostních chyb. Vylepšeny byly také nástroje pro vývojáře.
Homebrew (Wikipedie), správce balíčků pro macOS a od verze 2.0.0 také pro Linux, byl vydán ve verzi 4.5.0. Na stránce Homebrew Formulae lze procházet seznamem balíčků. K dispozici jsou také různé statistiky.
Byl vydán Mozilla Firefox 138.0. Přehled novinek v poznámkách k vydání a poznámkách k vydání pro vývojáře. Řešeny jsou rovněž bezpečnostní chyby. Nový Firefox 138 je již k dispozici také na Flathubu a Snapcraftu.
Šestnáctý ročník ne-konference jOpenSpace se koná 3. – 5. října 2025 v Hotelu Antoň v Telči. Pro účast je potřeba vyplnit registrační formulář. Ne-konference neznamená, že se organizátorům nechce připravovat program, ale naopak dává prostor všem pozvaným, aby si program sami složili z toho nejzajímavějšího, čím se v poslední době zabývají nebo co je oslovilo. Obsah, který vytvářejí všichni účastníci, se skládá z desetiminutových
… více »~(a | b) == ~a & ~b;A naopak:
~(a & b) == ~a | ~b;A taky myslím, že s xorem to nijak nejde, ale nevím - o takové věci se moc nezajímám.
XOR netvoří úplný systém logických spojek (samotým XORem nelze realizovat např. negaci). Nicméně množina {XOR, T} (T je tautologie) již úplný systém logických spojek tvoří. T pak v praxi není nic jiného než logická "1", takže pomocí XORu lze zkonstruovat libovolný logický obvod.
Jaj už jsem psal, množina {XOR, T} tvoří úplný systém logických spojek, takže pomocí těchto dvou operátorů opravdu lze složit libovolnou funkci. Úplných systémů logických spojek je celá řada, výjmečnost Shefferovy algebry (NAND) a Piercovy algebry (NOR) je pouze v tom, že zde je úplný systém logických spojek tvořen jednou jedinou spojkou.
P.S: "negativní tautologie" se většinou nazývá kontradikce
Tak jsem si to znovu rozmýšlel a obávám se, že nemáte pravdu. Položme
Af = f(0,0) ^ f(0,1) ^ f(1,0) ^ f(1,1)Pak elementárně A(f^g) = (Af) ^ (Ag) (XOR je komutativní a asociativní), ale problém je v tom, že pro všechny vaše stavební kameny (x,y,1) je Af rovno nule, takže vzhledem k výše uvedenému z nich nikdy nemáte šanci poskládat cokoli s Af = 1, např. AND. (Lidově řečeno: řekneme, že funkce je sudá, jestliže má v tabulce sudý počet jedniček. Snadno nahlédneme, že XOR dvou sudých funkcí je opět sudá funkce a protože funkce vracející první argument, funkce vracející druhý argument i tautologie jsou sudé funkce, nikdy z nich nesložíte lichou.)
Máte samozřejmě pravdu, úplný systém logických spojek tvoří až množina {XOR, T, AND či OR} (nebo jiná "větší" množina s XORem). Jdu si na studijní nechat zrušit zkoušku z matematické logiky...
Zjednodušeně řečeno to lze dokázat ve dvou krocích:
1. Nejprve musíte dokázat, že jakákoli logická funkce více proměnných lze napsat pomocí funkcí dvou proměnných a negace (funkce jedné proměnné). To samozřejmě dokázat lze, pro booleovské operace platí "běžná" pravidla, jako je asociativita, komutativita atd.
2. potom stačí pro vybranou funkci zjistit, zda pomocí ní lze realizovat všech šestnáct binárních funkcí dvou proměnných (s využitím výše zmíněných pravidel a de Morganova pravidla). To stačí pouze rozepsat na papíře a hned máte výsledek.
Tiskni
Sdílej: