Wayback byl vydán ve verzi 0.3. Wayback je "tak akorát Waylandu, aby fungoval Xwayland". Jedná se o kompatibilní vrstvu umožňující běh plnohodnotných X11 desktopových prostředí s využitím komponent z Waylandu. Cílem je nakonec nahradit klasický server X.Org, a tím snížit zátěž údržby aplikací X11.
Byla vydána verze 4.0.0 programovacího jazyka Ruby (Wikipedie). S Ruby Box a ZJIT. Ruby lze vyzkoušet na webové stránce TryRuby. U příležitosti 30. narozenin, první veřejná verze Ruby 0.95 byla oznámena 21. prosince 1995, proběhl redesign webových stránek.
Všem čtenářkám a čtenářům AbcLinuxu krásné Vánoce.
Byla vydána nová verze 7.0 linuxové distribuce Parrot OS (Wikipedie). S kódovým názvem Echo. Jedná se o linuxovou distribuci založenou na Debianu a zaměřenou na penetrační testování, digitální forenzní analýzu, reverzní inženýrství, hacking, anonymitu nebo kryptografii. Přehled novinek v příspěvku na blogu.
Vývojáři postmarketOS vydali verzi 25.12 tohoto před osmi lety představeného operačního systému pro chytré telefony vycházejícího z optimalizovaného a nakonfigurovaného Alpine Linuxu s vlastními balíčky. Přehled novinek v příspěvku na blogu. Na výběr jsou 4 uživatelská rozhraní: GNOME Shell on Mobile, KDE Plasma Mobile, Phosh a Sxmo.
Byla vydána nová verze 0.41.0 multimediálního přehrávače mpv (Wikipedie) vycházejícího z přehrávačů MPlayer a mplayer2. Přehled novinek, změn a oprav na GitHubu. Požadován je FFmpeg 6.1 nebo novější a také libplacebo 6.338.2 nebo novější.
Byla vydána nová verze 5.5 (novinky) skriptovacího jazyka Lua (Wikipedie). Po pěti a půl letech od vydání verze 5.4.
Byla vydána nová verze 5.4.0 programu na úpravu digitálních fotografií darktable (Wikipedie). Z novinek lze vypíchnout vylepšenou podporu Waylandu. Nejnovější darktable by měl na Waylandu fungovat stejně dobře jako na X11.
Byla vydána beta verze Linux Mintu 22.3 s kódovým jménem Zena. Podrobnosti v přehledu novinek a poznámkách k vydání. Vypíchnout lze, že nástroj Systémová hlášení (System Reports) získal mnoho nových funkcí a byl přejmenován na Informace o systému (System Information). Linux Mint 22.3 bude podporován do roku 2029.
GNU Project Debugger aneb GDB byl vydán ve verzi 17.1. Podrobný přehled novinek v souboru NEWS.
A[x][y][z][n]. velikosti (kromě n) jsou vysoké stovky, cele pole je 1-2 GB, takže to nejde jako lokální proměnná v main. ale nedaří se mi vymyslet jak zkonvertuji pointr ziskaný alokací z malloc void * = malloc (potrebna velikost);na 4 dimenzionální pole.
Řešení dotazu:
buťto uděláš mockrát posobě malloc nebo strašně dlouhatatatatatatánskou jednorozměrnou nudli a k elementům pole se budeš dostávat ukazatelovovou aritmetikou :D ;D
hele pro 3d :O ;D prostě jako ještě jeden rozměr přidáš a bude to jakoby uplně to samý :D :D ;D ;D
Osobně bych asi radši použil tu dlouhou nudli. Jirkabuťto uděláš mockrát posobě malloc nebo strašně dlouhatatatatatatánskou jednorozměrnou nudli a k elementům pole se budeš dostávat ukazatelovovou aritmetikou :D ;D
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ARRAY_TYPE int
// return ARRAY_TYPE[s1][s2][s3][s4]
ARRAY_TYPE ****alloc4array(size_t s1,size_t s2,size_t s3,size_t s4)
{
ARRAY_TYPE ****data;
size_t a,b,c;
data=(ARRAY_TYPE ****) malloc(s1*sizeof(ARRAY_TYPE***));
for(a=0;a<s1;a++)
{
data[a]=(ARRAY_TYPE ***) malloc(s2*sizeof(ARRAY_TYPE **));
if(data[a] == NULL)
exit(1);
for(b=0;b<s2;b++)
{
data[a][b]=(ARRAY_TYPE **) malloc(s3*sizeof(ARRAY_TYPE *));
if(data[a] == NULL)
exit(1);
for(c=0;c<s3;c++)
{
data[a][b][c]=(ARRAY_TYPE *) malloc(s4*sizeof(ARRAY_TYPE));
if(data[a] == NULL)
exit(1);
bzero(data[a][b][c], s4*sizeof(ARRAY_TYPE));
}
}
}
return data;
}
int main(int argc, char **argv)
{
ARRAY_TYPE ****data;
data=alloc4array(100,100,100,100);
printf("[0,0,0,0]: %d\n", data[0][0][0][0]);
// plus uvolnit pole
return 0;
}
Ak nemáš veľkú RAM, tak dobre je pri takých testov vypnúť swap. V prípade, že program spotrebuje všetku RAM, tak OS proces zabije a nezačne pomaly swapovať.
Toto je zle riešenie, nepoužívať.Bylo by fajn napsat, kde je chyba. Ale našel jsem to. Jirka
diff
22c22 < if(data[a] == NULL) --- > if(data[a][b] == NULL) 27c27 < if(data[a] == NULL) --- > if(data[a][b][c] == NULL)
Měl jsem stejný nápad. Jirkadiff
22c22 < if(data[a] == NULL) --- > if(data[a][b] == NULL) 27c27 < if(data[a] == NULL) --- > if(data[a][b][c] == NULL)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ARRAY_TYPE int
// return ARRAY_TYPE[s1][s2][s3][s4]
ARRAY_TYPE ****alloc4array(size_t s1,size_t s2,size_t s3,size_t s4)
{
ARRAY_TYPE ****data;
size_t a,b,c;
data=(ARRAY_TYPE ****) malloc(s1*sizeof(ARRAY_TYPE***));
for(a=0;a<s1;a++)
{
data[a]=(ARRAY_TYPE ***) malloc(s2*sizeof(ARRAY_TYPE **));
if(data[a] == NULL)
exit(1);
for(b=0;b<s2;b++)
{
data[a][b]=(ARRAY_TYPE **) malloc(s3*sizeof(ARRAY_TYPE *));
if(data[a][b] == NULL)
exit(1);
for(c=0;c<s3;c++)
{
data[a][b][c]=(ARRAY_TYPE *) malloc(s4*sizeof(ARRAY_TYPE));
if(data[a][b][c] == NULL)
exit(1);
bzero(data[a][b][c], s4*sizeof(ARRAY_TYPE));
}
}
}
return data;
}
int main(int argc, char **argv)
{
ARRAY_TYPE ****data;
data=alloc4array(100,100,100,100);
printf("[0,0,0,0]: %d\n", data[0][0][0][0]);
// plus uvolnit pole
return 0;
}
Ak nemáš veľkú RAM, tak dobre je pri takých testov vypnúť swap. V prípade, že program spotrebuje všetku RAM, tak OS proces zabije a nezačne pomaly swapovať.
mmap(3), se kterým se budou data ze souboru číst až při přístupu. Jem ožné to nastavit tak, že se data do souboru propisují, paměť je jen pro čtení, nebo je možné paměť zapisovat beze změny souboru.
Preferuji přístup s dlouhou jednorozměrnou nudlí, protože se nemusí mnhohokrát volat malloc a namísto 4 přístupů do paměti postačí jeden.
Ukázka:
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
struct hypercube_entry
{
uint32_t value;
};
struct hypercube
{
size_t z_len, y_len, x_len, w_len;
struct hypercube_entry entries[];
};
struct hypercube *
hypercube_alloc(size_t z_len,
size_t y_len,
size_t x_len,
size_t w_len);
inline static struct hypercube_entry *
hypercube_entry(struct hypercube *hypercube,
size_t z_len,
size_t y_len,
size_t x_len,
size_t w_len);
size_t
hypercube_sizeof(size_t z_len,
size_t y_len,
size_t x_len,
size_t w_len);
struct hypercube *
hypercube_alloc(size_t z_len,
size_t y_len,
size_t x_len,
size_t w_len)
{
struct hypercube *hypercube_mem;
size_t hypercube_sz;
hypercube_sz = hypercube_sizeof(z_len, y_len, x_len, w_len);
hypercube_mem = malloc(hypercube_sz);
if (hypercube_mem == NULL) {
fprintf(stderr,
"Cannot allocate %lu bytes for hypercube. Aborting.\n",
hypercube_sz);
}
hypercube_mem->z_len = z_len;
hypercube_mem->y_len = y_len;
hypercube_mem->x_len = x_len;
hypercube_mem->w_len = w_len;
}
size_t
hypercube_sizeof(size_t z_len,
size_t y_len,
size_t x_len,
size_t w_len)
{
return sizeof(struct hypercube)
+ sizeof(struct hypercube_entry) * z_len * y_len * x_len * w_len;
}
inline static struct hypercube_entry *
hypercube_entry(struct hypercube *hypercube,
size_t z,
size_t y,
size_t x,
size_t w)
{
struct hypercube_entry *entry = hypercube->entries;
entry += z * hypercube->y_len * hypercube->x_len * hypercube->w_len;
entry += y * hypercube->x_len * hypercube->w_len;
entry += x * hypercube->w_len;
entry += w;
return entry;
}
int
main(void)
{
size_t z_len = 100;
size_t y_len = 99;
size_t x_len = 98;
size_t w_len = 97;
struct hypercube *hypercube;
hypercube = hypercube_alloc(z_len, w_len, y_len, x_len);
printf("Allocated %lu bytes\n.",
hypercube_sizeof(z_len, w_len, y_len, x_len));
/* Draw 4-dimensional super-ellipsoid.
* Quite inefficient algorithm. */
for (int x = 0; x < hypercube->x_len; x++)
for (int y = 0; y < hypercube->y_len; y++)
for (int z = 0; z < hypercube->z_len; z++)
for (int w = 0; w < hypercube->w_len; w++) {
bool is_inside = .5f >= (
powf(((float) x - 50.f) * .02, 4.f)
+ powf(((float) y - 50.f) * .02, 4.f)
+ powf(((float) z - 50.f) * .02, 4.f)
+ powf(((float) w - 50.f) * .02, 4.f));
hypercube_entry(hypercube, z, y, x, w)->value
= is_inside ? 1 : 0;
}
/* Draw slices of it. */
for (int w = 10; w < hypercube->w_len - 10; w += 10) {
printf("w = %i\n", w);
for (int y = 1; y < hypercube->y_len; y += 2) {
for (int x = 1; x < hypercube->x_len; x++) {
int z = 0;
for (;
z < hypercube->z_len
&& !hypercube_entry(hypercube, z, y, x, w)->value;
z++);
if (z < 80) {
if (hypercube_entry(hypercube, z, y - 1, x - 1, w)
->value) {
putchar('*');
} else {
putchar('#');
}
} else {
putchar('_');
}
}
putchar('\n');
}
putchar('\n');
}
}
MAP_PRIVATE) s možností zápisu a zapisovat do něj jak chce.
Odpovědi typu rádoby-pole à la Java už tady zazněly, takže přidávám jednu s kompaktním 4-rozměrným polem.
Tohle^^^, mimochodem, v dotazu chybí — jestli jsou jednotlivé dimenze stále stejně velké a pole lze tudíž alokovat naráz jedním malloc()em nebo jestli se velikost různých (pod)polí může lišit a všechno se pak musí alokovat přes další úrovně polí pointerů, jako v Javě.
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
struct A { int blah; };
static const size_t X = 11,
Y = 13,
Z = 7,
N = 5;
int main() {
struct A (*const array)[Y][Z][N] =
malloc(sizeof(struct A[X][Y][Z][N]));
int counter = X * Y * Z * N / 2;
for (size_t x = 0; x < X; ++x)
for (size_t y = 0; y < Y; ++y)
for (size_t z = 0; z < Z; ++z)
for (size_t n = 0; n < N; ++n)
array[x][y][z][n].blah = counter--;
int64_t sum = 0;
for (size_t x = 0; x < X; ++x)
for (size_t y = 0; y < Y; ++y)
for (size_t z = 0; z < Z; ++z)
for (size_t n = 0; n < N; ++n)
sum += array[x][y][z][n].blah;
free(array);
printf("%" PRId64 "\n", sum);
}
Trik je v tom, že v typu pointeru na pole array chybí první rozměr X — ten jako jediný není třeba definovat v typu, protože pointerová ařiťmetika potřebuje znát jenom ty následující rozměry. Tedy 4-rozměrné pole můžeme s klidem nechat „zkazit“ na pointer na první (tedy, nulté) 3-rozměrné (pod)pole.
Že to vypíše nulu, to je asi jasné, leč mnohem důležitější vždycky je, co na to říká valgrind.
Ještě pro úplnost: To „slibované“ smrduté kazení pole na pointer se v mém příkladu vůbec neděje. Vezmu void* z malloc() a přiřadím ho rovnou do pointeru na nulté 3-rozměrné pod-pole.
Ale kdybych kolem toho chtěl strašně moc kecat, mohlo by to vypadat třeba takhle:
struct A (*const alloc)[X][Y][Z][N] =
malloc(sizeof(struct A[X][Y][Z][N]));
struct A (*const array)[Y][Z][N] = *alloc; /* Tady! */
/* ... */
free(alloc);
Jo a kdo si to chce fakt zahustit, ten si může nastavit třeba:
static const size_t X = 201,
Y = 201,
Z = 201,
N = 201;
To^^^ pak trvá (na mém stroji) celé 1,5 (se)kundy, což už je nějaké trvání! Velikost toho pole bude 6528963204 B, takže asi 6,08 GiB.
(se)kundyhahahahahaha nechceš být standup komik s tímhle materiálem?
Chtěl bych kandidovat na prezidenta, až na to budu mít věk. Zatím mám fyzicky 37 a mentálně cca 15, takže 2023 nestíhám. 2028 snad.
Tiskni
Sdílej: