Byla vydána verze 6.0 webového aplikačního frameworku napsaného v Pythonu Django (Wikipedie). Přehled novinek v poznámkách k vydání.
Po více než 7 měsících vývoje od vydání verze 6.8 byla vydána nová verze 6.9 svobodného open source redakčního systému WordPress. Kódové jméno Gene bylo vybráno na počest amerického jazzového klavíristy Gene Harrise (Ray Brown Trio - Summertime).
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za listopad (YouTube).
Google Chrome 143 byl prohlášen za stabilní. Nejnovější stabilní verze 143.0.7499.40 přináší řadu novinek z hlediska uživatelů i vývojářů. Podrobný přehled v poznámkách k vydání. Opraveno bylo 13 bezpečnostních chyb.
Společnost Valve aktualizovala přehled o hardwarovém a softwarovém vybavení uživatelů služby Steam. Podíl uživatelů Linuxu dosáhl 3,2 %. Nejčastěji používané linuxové distribuce jsou Arch Linux, Linux Mint a Ubuntu. Při výběru jenom Linuxu vede SteamOS Holo s 26,42 %. Procesor AMD používá 66,72 % hráčů na Linuxu.
Canonical oznámil (YouTube), že nově nabízí svou podporu Ubuntu Pro také pro instance Ubuntu na WSL (Windows Subsystem for Linux).
Samsung představil svůj nejnovější chytrý telefon Galaxy Z TriFold (YouTube). Skládačka se nerozkládá jednou, ale hned dvakrát, a nabízí displej s úhlopříčkou 10 palců. V České republice nebude tento model dostupný.
Armbian, tj. linuxová distribuce založená na Debianu a Ubuntu optimalizovaná pro jednodeskové počítače na platformě ARM a RISC-V, ke stažení ale také pro Intel a AMD, byl vydán ve verzi 25.11.1. Přehled novinek v Changelogu.
Byla vydána nová verze 15.0 svobodného unixového operačního systému FreeBSD. Podrobný přehled novinek v poznámkách k vydání.
UBports, nadace a komunita kolem Ubuntu pro telefony a tablety Ubuntu Touch, vydala Ubuntu Touch 24.04 1.1 a 20.04 OTA-11. Vedle oprav chyb a drobných vylepšení je řešen také středně závažný bezpečnostní problém.
Některé programy, které vyvíjíme (Fotomon, Měření) , používají množství různé statistiky. Moje chápání statistiky je spíše klasické, ale existuje ještě jiný pohled na statistiku - Bayesiánská statistika. Rozhodl jsem se jí porozumět a naučit se ji prakticky používat.
Moje první kroky vedly na Wikipedii:
http://cs.wikipedia.org/wiki/Bayesova_věta
Našel jsem tam přesně to, co jsem čekal: matematický formalismus, pod kterým si nedovedu nic představit (pravděpodobnost, že na Wikipedii najdu to, co hledám, ve formě stravitelné pro průměrného inženýra, už dnes dovedu pomocí bayesiánské statistiky docela dobře odhadnout). Ale je tam odkaz:
http://cs.wikipedia.org/wiki/Bayesovská_statistika
Je tam příklad. Skvělé! Ale kdo tohle psal!? Velmi volně cituji:
Test na nemoc dá kladnou odpověď u 99% nemocných pacientů a u 5% zdravých pacientů. Nemocí trpí jen 0.1% populace. Jaká je pravděpodobnost?
He? WTF? Jaká pravděpodobnost? Co se po mě chce? Pravděpodobnost čeho? No nic, třeba to vyplyne z textu dále:
"Pravděpodobnost choroby je o 19% větší, než u těch, kdo se testu nepodrobili."
No nazdar, máme zde další skupinu: přibyli nám ještě netestovaní. Kam si je mám zařadit? Navíc to je formulováno tak nešťastně, že kdybych nevěděl, jak veliký je to nesmysl, mohl bych usuzovat, že provedení testu nějak ovliní, jestli člověk onemocní, nebo zůstane zdravý.
Jsem ztracen.
Několikrát jsem narazil na příklad s dvěma pytlíky s bílými a černými kuličkami, což mi celou problematiku ještě více zatemnilo. Tuhle míchanici současné a předchozí pravděpodobnosti, střídaní minulosti, přítomnosti a budoucno také nedokázal nikdo dostatečně jasně vysvětlit. Popis primitivní úlohy na tři listy formátu A4 zvyšuje WTF faktor nade všechny meze.
Začal jsem hledat v angličtině. Odfiltroval jsem všechny kuličky v pytlíku a nakonec jsem skvělý příklad objevil zde:
http://people.hofstra.edu/Stefan_Waner/RealWorld/tutorialsf3/frames6_6.html
Konečně mi docvaklo. Celý ten Bayesův vzorec je obyčejná trojčlenka. To mi mohli vysvětlit už v prváku na střední a nemusí se z toho dělat zbytečná věda. Jakmile jsem si to namaloval a pochopil, vypadá základ bayesovské statistiky prostince:
Pro praktické použití je třeba ještě pochopit jednu věc: bayesiánský vzorec je často uváděn ve zjednodušené formě a není jasné, jak z něj spočítat například toto:
Ve jmenovateli (část zlomku pod čarou) Bayesova vzorce figuruje takzvaná "úplná pravděpodobnost". V příkladu dopujících a nedopujících sportovců je to součet všech pozitivních výsledků, tj. 9,5% + 13,5%. V případě tří fabrik je to:
Sečteme jednotlivá procenta: celkem 2,9% ze všech výrobků na trhu jsou zmetky. Z fabriky A jich pochází: 50% * 2% / 2,9% = 34,4%
(Příklad jsem nalezl v dokumentu, který nyní není dostupný, googlujte "Bayes Krčková").
Možnost použít libovolný počet různých vstupních parametrů (zde fabriky A, B a C) je dobrá zpráva pro praktické použití v programech - dovoluje to snadno dekomponovat problém na několik samostatných částí.
Jakmile jsem pochopil princip, došlo mi, že bayesiánská statistika není nic složitého či nepochopitelného. Zkuste si to. Namalujte si třeba dva pytlíky s kuličkami - uvidíte sami.
Tiskni
Sdílej:
Moje chápání statistiky je spíše klasické, ale existuje ještě jiný pohled na statistiku - Bayesiánská statistika.
WtF?
Nicméně, je jasné, že různé pohledy na statistiku nemohou nic změnit na platnosti Bayosova vzorce. Tj. i "frekventisté" platnost Bayosova vzorce samozřejmě uznávají.Presne tak, pokud tomu rozumim, tak rozdil mezi 'frekventistickou' a 'bayesovskou' interpretaci pravdepodobnosti je ciste zalezitost interpretacni, na vzorce a vysledky to nema vliv (podobne jako ruzne interpretace kvantove mechaniky). Proto je treba nemichat 'bayesovskou interpretaci' na jedne strane a bayesuv vzorec ci bayesovskouu inferenci, coz jsou elementarni veci z pravdepodobnosti a statistiky platne a pouzivane nezavisle na interpretaci.