Software LibrePods osvobozuje bezdrátová sluchátka AirPods z ekosystému Applu. Exkluzivní funkce AirPods umožňuje využívat na Androidu a Linuxu. Díky zdokumentování proprietárního protokolu AAP (Apple Accessory Protocol).
Byl vydán AlmaLinux OS 10.1 s kódovým názvem Heliotrope Lion. S podporou Btrfs. Podrobnosti v poznámkách k vydání.
Placená služba prohledávání zprostředkovatelů dat a automatického odstraňování uniklých osobních údajů Mozilla Monitor Plus bude 17. prosince ukončena. Bezplatná monitorovací služba Mozilla Monitor bude i nadále poskytovat okamžitá upozornění a podrobné pokyny k omezení rizik úniku dat. Služba Mozilla Monitor Plus byla představena v únoru loňského roku.
Waydroid (Wikipedie, GitHub) byl vydán v nové verzi 1.6.0. Waydroid umožňuje spouštět aplikace pro Android na běžných linuxových distribucích. Běhové prostředí vychází z LineageOS.
Příspěvek na blogu Raspberry Pi představuje novou kompletně přepracovanou verzi 2.0 aplikace Raspberry Pi Imager (YouTube) pro stažení, nakonfigurování a zapsání obrazu operačního systému pro Raspberry Pi na SD kartu. Z novinek lze vypíchnout volitelnou konfiguraci Raspberry Pi Connect.
Memtest86+ (Wikipedie), svobodný nástroj pro kontrolu operační paměti, byl vydán ve verzi 8.00. Přináší podporu nejnovějších procesorů Intel a AMD nebo také tmavý režim.
Programovací jazyk Racket (Wikipedie), tj. jazyk z rodiny jazyků Lisp a potomek jazyka Scheme, byl vydán v nové major verzi 9.0. Hlavní novinku jsou paralelní vlákna (Parallel Threads).
Před šesti týdny bylo oznámeno, že Qualcomm kupuje Arduino. Minulý týden byly na stránkách Arduina aktualizovány podmínky používání a zásady ochrany osobních údajů. Objevily se obavy, že by otevřená povaha Arduina mohla být ohrožena. Arduino ubezpečuje, že se nic nemění a například omezení reverzního inženýrství v podmínkách používání se týká pouze SaaS cloudové aplikace.
Knihovna libpng, tj. oficiální referenční knihovna grafického formátu PNG (Portable Network Graphics), byla vydána ve verzi 1.6.51. Opraveny jsou 4 bezpečnostní chyby obsaženy ve verzích 1.6.0 (vydána 14. února 2013) až 1.6.50. Nejvážnější z chyb CVE-2025-65018 může vést ke spuštění libovolného kódu.
Nové číslo časopisu Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 159 (pdf).
Narazil jsem na problém s rychlostí fce Gdk::Pixbuf::create_from_file() v Gtkmm 2.22 pod Windows. Pokud se použije pro načtení cca 4MB JPEGu 5600x3700, tak jí to trvá cca 10s.
Na Linuxu to trvá této fci cca 350ms. Pod Wine se tento problém neprojevuje, načtení trvá jen o něco málo déle než na Linuxu. Použil jsem ftp.gnome.org/pub/GNOME/binaries/win32/gtkmm/2.22. Zkoušel jsem i některé starší verze knihovny, ale problém přetrvával.
Něchtělo se mi ztrácet čas zbytečnou kompilací celé knihovny a všech jejich závislostí, tak jsem hledal zda-li se nedají sehnat binárky někde jinde. A našel jsem je např. v OpenSUSE 12.3 ve verzi 2.24.2, tyto binárky fungují bez problémů i ve Windows.
Vývoj dělám v Debian Wheezy a verzi pro Windows kompiluji cross-kompilátorem z projektu MinGW, který je jeho součástí. Binárky pro Windows testuji většinou pod Wine a na čistých Windows až před vydáním další ostré verze.
Uvítal jsem, že je yum součástí Debianu:
# aptitude install yum
Přidáme repozitář s potřebnými balíčky:
# vim /etc/yum/repos.d/opensuse.repo [windows_mingw_win32] name=Cross-toolchain for 32-bit windows and 32-bit windows packages (openSUSE_12.3) type=rpm-md baseurl=http://download.opensuse.org/repositories/windows:/mingw:/win32/openSUSE_12.3/ gpgcheck=1 gpgkey=http://download.opensuse.org/repositories/windows:/mingw:/win32/openSUSE_12.3/repodata/repomd.xml.key enabled=1
Zjistíme v jakých balíčcích se nachází knihovna Gtkmm a nainstalujeme je:
# yum search gtkmm2 === Matched: gtkmm2 === mingw32-gtkmm2.noarch : C++ bindings for GTK+2 mingw32-gtkmm2-debug.noarch : Debug information for package mingw32-gtkmm2 mingw32-gtkmm2-devel.noarch : C++ bindings for GTK+2 (devel) # yum install mingw32-gtkmm2-devel.noarch mingw32-gtkmm2.noarch
Dotážeme se kde se nachází řídící soubory pro pkgconfig, abychom mohli pohodlně předávat potřebné parametry kompilátoru:
# rpm -q -l mingw32-gtkmm2-devel.noarch |grep pkgconfig /usr/i686-w64-mingw32/sys-root/mingw/lib/pkgconfig/gdkmm-2.4.pc /usr/i686-w64-mingw32/sys-root/mingw/lib/pkgconfig/gtkmm-2.4.pc # PKG_CONFIG_PATH=/usr/i686-w64-mingw32/sys-root/mingw/lib/pkgconfig pkg-config --cflags --libs gtkmm-2.4
Vzhledem k tomu, že nechci instalovat závislosti cross-kompilátoru z OpenSUSE, tak jsem použil Windows verzi kompilátoru a spouštím jí pod Wine:
# yum install mingw32-gcc.noarch mingw32-gcc-c++.noarch
Třeba se to bude někomu hodit. Pokud má někdo nějaké tipy a zkušenosti k tématu, budu rád, když se o ně podělíte v diskuzi.
Zjistíme kde má MinGW knihovny:
$ yum whatprovides '*/libstdc++-6.dll' /usr/i686-w64-mingw32/sys-root/mingw/bin/libstdc++-6.dll
Vypíšeme seznam knihoven, které musíme přibalit k binárce:
$ ./dll_dependencies.py gdk_pixbuf_create_from_file.exe /usr/i686-w64-mingw32/sys-root/mingw/bin libgcc_s_sjlj-1.dll libgdkmm-2.4-1.dll libcairomm-1.0-1.dll libcairo-2.dll libfontconfig-1.dll libfreetype-6.dll zlib1.dll libxml2-2.dll libpixman-1-0.dll libpng15-15.dll libsigc-2.0-0.dll libstdc++-6.dll libgdk_pixbuf-2.0-0.dll libgio-2.0-0.dll libglib-2.0-0.dll libintl-8.dll libgmodule-2.0-0.dll libgobject-2.0-0.dll libffi-6.dll libjasper-1.dll libjpeg-8.dll libtiff-5.dll liblzma-5.dll libgdk-win32-2.0-0.dll libpango-1.0-0.dll libpangocairo-1.0-0.dll libpangoft2-1.0-0.dll libharfbuzz-0.dll libpangowin32-1.0-0.dll libglibmm-2.4-1.dll libgtk-win32-2.0-0.dll libatk-1.0-0.dll libpangomm-1.4-1.dll libgtkmm-2.4-1.dll libatkmm-1.6-1.dll libgiomm-2.4-1.dll
dll_dependencies.py
#!/usr/bin/python
import os
import sys
from subprocess import Popen, PIPE
DLLS_BLACKLIST = [
"KERNEL32.dll",
"msvcrt.dll",
"USER32.dll",
"GDI32.dll",
"WS2_32.dll",
"MSIMG32.DLL",
"ADVAPI32.dll",
"DNSAPI.DLL",
"ole32.dll",
"SHELL32.DLL",
"WINMM.DLL",
"SHLWAPI.DLL",
"IMM32.DLL",
"USP10.dll",
"COMCTL32.DLL",
"COMDLG32.DLL",
"WINSPOOL.DRV",
]
class DllDependencies:
def __init__(self, program_exe, dlls_path):
self.dlls_path = dlls_path
self.result = []
self.get_dlls(program_exe)
print "\n".join(self.result)
def get_dlls(self, program_exe):
if (not os.path.isfile(program_exe)):
print "%s not found" % program_exe
return
pipe = Popen("objdump -x %s |\
grep 'DLL Name' |\
sort |\
uniq" % program_exe,
shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE)
for line in pipe.stdout.readlines():
dll = line.strip().split()[2]
if ((dll not in DLLS_BLACKLIST) and (dll not in self.result)):
self.result.append(dll)
dll = "%s/%s" % (self.dlls_path, dll)
self.get_dlls(dll)
def main():
if (len(sys.argv) != 3):
print "Usage: %s PROGRAM_EXE DLLS_PATH" % sys.argv[0]
sys.exit(-1)
DllDependencies(sys.argv[1], sys.argv[2])
if __name__ == '__main__':
main()
Makefile:
GPP = g++ -O2 -Wall #W_GPP = i686-w64-mingw32-g++ -O2 -Wall W_GPP = /usr/i686-w64-mingw32/sys-root/mingw/bin/g++.exe -O2 -Wall GTKMM = `pkg-config --cflags --libs gtkmm-2.4` PKG_CONFIG_PATH = /usr/i686-w64-mingw32/sys-root/mingw/lib/pkgconfig W_GTKMM_CFLAGS = `PKG_CONFIG_PATH=$(PKG_CONFIG_PATH) pkg-config --cflags gtkmm-2.4` W_GTKMM_LIBS = `PKG_CONFIG_PATH=$(PKG_CONFIG_PATH) pkg-config --libs gtkmm-2.4` all: gdk_pixbuf_create_from_file gdk_pixbuf_create_from_file.exe gdk_pixbuf_create_from_file: gdk_pixbuf_create_from_file.cpp $(GPP) $(GTKMM) -o gdk_pixbuf_create_from_file gdk_pixbuf_create_from_file.cpp gdk_pixbuf_create_from_file.exe: gdk_pixbuf_create_from_file.cpp $(W_GPP) $(W_GTKMM_CFLAGS) -o gdk_pixbuf_create_from_file.exe gdk_pixbuf_create_from_file.cpp $(W_GTKMM_LIBS)
gdk_pixbuf_create_from_file.cpp:
#include <gtkmm.h>
#include <glib.h>
#include <iostream>
#ifdef WIN32
// Windows
#include <windows.h>
// UINT64
//#include <basetsd.h>
#else
// Linux
#include <sys/time.h>
#include <ctime>
// uint64_t
//#include <stdint.h>
#endif
void print_timestamp(const char *p_msg)
{
static guint64 milliseconds_begin = 0;
guint64 milliseconds;
// http://stackoverflow.com/questions/1861294/how-to-calculate-execution-time-of-a-code-snippet-in-c
#ifdef WIN32
// Windows
FILETIME ft;
LARGE_INTEGER li;
// Get the amount of 100 nano seconds intervals elapsed since January 1, 1601 (UTC) and copy it
// to a LARGE_INTEGER structure.
GetSystemTimeAsFileTime(&ft);
li.LowPart = ft.dwLowDateTime;
li.HighPart = ft.dwHighDateTime;
milliseconds = li.QuadPart;
milliseconds -= 116444736000000000LL; // Convert from file time to UNIX epoch time.
milliseconds /= 10000; // From 100 nano seconds (10^-7) to 1 millisecond (10^-3) intervals
#else
// Linux
struct timeval tv;
gettimeofday(&tv, NULL);
milliseconds = tv.tv_usec;
// Convert from micro seconds (10^-6) to milliseconds (10^-3)
milliseconds /= 1000;
// Adds the seconds (10^0) after converting them to milliseconds (10^-3)
milliseconds += (tv.tv_sec * 1000);
#endif
if (milliseconds_begin == 0) {
milliseconds_begin = milliseconds;
}
std::cout << "timestamp - " << p_msg << ": " << (milliseconds - milliseconds_begin) << "ms" << std::endl;
milliseconds_begin = milliseconds;
}
int main(int argc, char *argv[])
{
Glib::RefPtr<Gdk::Pixbuf> image;
Gtk::Main kit(argc, argv);
print_timestamp("BEGIN");
image = Gdk::Pixbuf::create_from_file("image.jpeg");
print_timestamp("END");
}
Tiskni
Sdílej:
Diskuse byla administrátory uzamčena