Grafický správce balíčků Myrlyn pro SUSE a openSUSE, původně YQPkg, dospěl do stabilní verze 1.0.0. Postaven je nad libzypp a Qt 6. Projekt začal na SUSE Hack Weeku 24.
Vývojáři se podařilo vytvořit patch pro Wine, díky kterému je možné na linuxovém stroji nainstalovat a spustit Adobe Photoshop (testováno s verzemi Photoshopu PS2021 a PS2025). Dalším patchem se podařilo umožnit dokonce instalaci téměř celého Adobe Creative Cloud Collection 2023, vyjma aplikací Adobe XD a Adobe Fresco. Patch řeší kompatibilitu s windowsovými subsystémy MSHTML - jádrem prohlížeče Internet exporer, a MSXML3 - parserem
… více »Hackeři zaútočili na portál veřejných zakázek a vyřadili ho z provozu. Systém, ve kterém musí být ze zákona sdíleny informace o veřejných zakázkách, se ministerstvo pro místní rozvoj (MMR) nyní pokouší co nejdříve zprovoznit. Úřad o tom informoval na svém webu a na sociálních sítích. Portál slouží pro sdílení informací mezi zadavateli a dodavateli veřejných zakázek.
Javascriptová knihovna jQuery (Wikipedie) oslavila 20. narozeniny, John Resig ji představil v lednu 2006 na newyorském BarCampu. Při této příležitosti byla vydána nová major verze 4.0.0.
Singularity je rootkit ve formě jaderného modulu (Linux Kernel Module), s otevřeným zdrojovým kódem dostupným pod licencí MIT. Tento rootkit je určený pro moderní linuxová jádra 6.x a poskytuje své 'komplexní skryté funkce' prostřednictvím hookingu systémových volání pomocí ftrace. Pro nadšence je k dispozici podrobnější popis rootkitu na blogu autora, případně v článku na LWN.net. Projekt je zamýšlen jako pomůcka pro bezpečnostní experty a výzkumníky, takže instalujte pouze na vlastní nebezpečí a raději pouze do vlastních strojů 😉.
Iconify je seznam a galerie kolekcí vektorových open-source ikon, ke stažení je přes 275000 ikon z více jak dvou set sad. Tento rovněž open-source projekt dává vývojářům k dispozici i API pro snadnou integraci svobodných ikon do jejich projektů.
Dle plánu certifikační autorita Let's Encrypt nově vydává také certifikáty s šestidenní platností (160 hodin) s možností vystavit je na IP adresu.
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 14.0 (Mastodon). Forgejo je fork Gitei.
Just the Browser je projekt, 'který vám pomůže v internetovém prohlížeči deaktivovat funkce umělé inteligence, telemetrii, sponzorovaný obsah, integraci produktů a další nepříjemnosti' (repozitář na GitHubu). Využívá k tomu skrytá nastavení ve webových prohlížečích, určená původně pro firmy a organizace ('enterprise policies'). Pod linuxem je skriptem pro automatickou úpravu nastavení prozatím podporován pouze prohlížeč Firefox.
Svobodný multiplatformní herní engine Bevy napsaný v Rustu byl vydán ve verzi 0.18. Díky 174 přispěvatelům.
potom co jsme poresili gramatiky a takove ty veci a mame hezky derivacni strom. muzeme prejit k vyhodnocovani, resp. k samotnemu vypoctu. takze vsechno doted byly jenom takove pomocne plky a ted si drzte klobouky, protoze jedeme z kopce
jak jsem psal v predchozi kapitole, po rozparsovani mame jenom nejaky seznam, ktery obsahuje symboly po pripade nejake dalsi seznamy symbolu. proste nic uzasneho. k jednotlivym symbolum musime priradit nejake skutecne hodnoty. to se ve schemu deje pomoci tzv. prostredi (nekde jsem videl oznaceni ramce), coz jsou zkratka a dobre asociativni pole, kde jako klic slouzi symbol a jako hodnota realne prirazena hodnota. prostredi maji jeste jednu vlastnost -- jsou hierarchicky usporadany. pokud se hledany symbol v danem prostredi nenachazi prohleda se nadrazene a pokud ani tam neni, je bud vyhodnocen na svou prirozenou vazbu (napriklad cislo se vyhodnoti na cislo) a pokud takovou vazbu nema, je vracena chyba.
v praxi se osvedcilo mit dva typy prostredi, jeden typ schopny pojmout velke pocty symbolu (radove desitky, stovky, tisice) a druhy zase male (radove jednotky). ty velke jsou urceny pro pocatecni prostredi a ty mensi pro prostredi jednotlivych funkci. v praxi se pak pro prostredi s velkym poctem symbolu pouzivaji hash-tabulky a pro male bud spojove seznamy nebo pole. (zajimavych vysledku jde dosahnout v obou pripadech i pomoci binarnich stromu, s tim ze pro velka prostredi je potreba je nejakym zpusobem, nejlepe narazove vyvazovat)
z r5rs plyne, ze az na pocatecni prostredi, maji jednotliva prostredi konstantni velikost. ale rada implementaci to umi prehlizet.
otazka zni: jak vyhodnotit treba? (+ 1 (+ 2 3))
mohl bych zde uvest trivialni model na bazi stromove rekurze, kdy se overi, jestli je na vstupu seznam, tak se vyhodnoti prvni prvek a kdyz je to funkce tak se vyhodnoti i ostatni casti seznamu, ktere se funkci predaji jako parametry a vraci se vysledek. ale to sebou nese neprijemne dusledky typu, jak resit call/cc nebo koncova volani.
existuje rada sofistikovanych vyhodnocovacich modelu, at uz na bazi registrovych ci zasobnikovych procesoru. ja jsem prevzal model doc. vychodila, ktery tento model prednasi prvakum na katedre informatiky univerzity palackeho v olomouci a mirne jej modifikoval. (ty odkazy jsou proto, ze jsem slibil, nejake "kredity" pro katedru ;-]) jedna se o zasobnikovy model, pravda neni z nejrychlejsich, ale ma nektere prijemne rysy, napr. snadne rozsireni na implicitne paralelni vyhodnocovani, ale o tom az nekdy jindy, kdyby vas to zajimalo.
takze predstavme si vyhodnocovani jako virtualni procesor, ktery ma dva zasobniky -- jeden na zpracovani ukolu (exct) a druhy na ukladani mezivysledku (rslt). na zasobnik s ukoly (execution stack) se budou ukladat jednotlive instrukce, vcetne argumentu a prostredi, ve kterem ma byt dana instrukce vyhodnocena. v momente kdy zasobnik s ukoly je prazdny. mel by byt na zasobniku s mezivysledky prave jeden prvek. ktery je vysledkem.
pro zacatek zavedeme nasledujici instrukce:
[eval arg env (tail-priznak)] -- po jejim odebrani z vrcholu zasobniku se vyhodnoti argument arg v danem prostredi. tzn. pokud je argument symbol. vyhodnoti se na vazbu v danem prostredi a hodnota se zapise na zasobnik s vysledky. (tail-priznak slouzi k vyhodnoceni vyrazu v tail-pozici, coz zatim nebudeme resit a budeme jej s naprostym klidem ignorovat) pokud je argument arg seznam, nachysta se vyhodnoceni prvniho prvku a dalsi casti seznamu cakaji na zpracovani pomoci instrukce "inspect".
napr. ("|" znaci dno zasobniku)
exct: [eval #<symbol 158> #env] | rslt: | => exct: | rslt: #<int 158> nebo exct: [eval (+ 1 2) #env] | rslt: | => exct: [eval #<symbol +> #env] [inspect (1 2) #env] | rslt: |
pokud je na vrcholu zasobniku s mezivysledky (rslt) funkce, provede se vyhodnoceni jednotlivych argumentu a aplikace jako argument dane funkce. (specialni formy se vyhodnocuji trochu jinak, ale o tom az v pristi kapitole)
napr.exct: [eval #<symbol +> #env] [inspect (1 2) #env] | rslt: | => exct: [inspect (1 2) #env] | rslt: #<func +> | => exct: [eval #<symbol 1> #env] [eval #<symbol 2> #env] [run 2 #env] | rslt: #<func +> | =>....=> exct: [run 2 #env] | rslt: #<int 2> #<int 1> #<func +> |
odebere z vrcholu zasobniku dany pocet prvku a aplikuje je na funkci na vrcholu, kterou taky odebere. vysledek volani pak umisti opet na zasobnik.
napr.exct: [run 2 #env] | rslt: #<int 2> #<int 1> #<func +> | => exct: | rslt: #<int 3> |
no, v predchozi casti, operuju s hodnotou typu func, kterou jsem zatim nikde nedefinoval. jedna se o ukazatel na funkci, ktera prijima pocet parametru a po le parametru a vysledek operace vraci. zavedeme tedy typ scm_func jako ukazatel na funkci.
typedef struct scm_value * (*scm_func)(int cnt, struct scm_value **);
a union v scm_value rozsirime o tento typ. jako argument by sel pouzit i jeden seznam -- na druhou stranu jsem si rikal, ze pristup k poli bude rychlejsi, navic aserce na pocet vstupu muze byt dost casta, tak se oplati mit predem spocitany pocet argumentu pred volanim funkce.
dalsi veci, ktera vyrazne zrychli beh, je agresivni inlinovani vetsiny funkci. operace se zasobnikem (fyzickeho procesoru) jsou sice rychle, ale kdyz se vo laji mooooockrat jde to poznat.
samozrejme kompilace s -O3 udela taky hodne.
u beznych funkci se predpoklada, ze argumnety budou vyhodnocovany naraz v libovolnem poradi i kdyz r5rs rika, ze by to melo byt v jednom nebo druhem smeru a poporade. u specialnich forem uz to poradi specifikovane je a treba v pripade kosntrukce (define foo bar) by vyhodnoceni hodnoty foo vedlo k chybe.
exct: [eval (if condition result1 result2) #env] | rslt: | => exct: [inspect (condition result1 result2) #env] | rslt: #<specform if> | => exct: [eval condition #env] [if #env] | rslt: result1 result2 | => exct: [if #env] | rslt: #<bool #t> result1 result2 | => exct: [eval result1 #env] | rslt: |
exct: [eval (define foo bar) #env] | rslt: | => exct: [inspect (foo bar) #env] | rslt: #<specform define> | => exct: [eval bar #env] [define #env] | rstl: #<symbol foo> | => exct: [define #env] | rslt: bar #<symbol foo> | => exct: | rslt: bar
dalsi specialni formy se daji definovat obdobne, ale to je mimo rozsah tohoto textu. asi nikomu neuniklo, ze sice umime vyhodnocovat spoustu vyrazu, ale diky chybejici abstrakci ne vsechny, ale o dalsich hezkych konstruktech jako lambda nebo call/cc bude rec v dalsi kapitole.
zaverem, doufam ze to bylo aspon trochu srozumitelne a nekdo to docetl az na konec.
Tiskni
Sdílej:
(define (make-closure x)
(lambda () (set! x (+ x 1)) x))
(define closure1 (make-closure 10))
(define closure2 (make-closure 20))
nedokazu si to nejak moc dobre pomoci toho listu predstavit. minimalne by to mel byt strom...
(eval '(make-closure 10) env) => (eval '(lambda () (set! x (+ x 1)) x)) (cons '(x . 10) env)) (eval '(make-closure 20) env) => (eval '(lambda () (set! x (+ x 1)) x)) (cons '(x . 20) env))Každá closure má svoji vlastní verzi x. Tedy pro interpreter, pro kompilátor by bylo potřeba mít v alistu ne hodnotu, ale nějaký odkaz na skutečné místo kde ta data budou. Co přehlížím?
(define closure1 (make-closure 10)) (define closure2 (make-closure 20))diky lexikalnimu rozsahu musi byt prostredi z (make-closure) zachovane... a nemuzu prijit na to, jak by v tom seznamu byly usporadane, aby fungovalo vyhledavani... nicmene toto by fungovalo moc dobre pri dynamickem rozsahu...
(cons '(x 10/20) env).
No, vlastně je výsledné prostředí, nazíráno globálně, opravdu strom. :) Ale v každém určitém místě je z něj vidět jen seznam.