abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×
    dnes 22:00 | IT novinky

    Uživatelé komunikátoru Signal si mohou svá data přímo v Signalu bezpečně zálohovat a v případě rozbití nebo ztráty telefonu následně na novém telefonu obnovit. Zálohování posledních 45 dnů je zdarma. Nad 45 dnů je zpoplatněno částkou 1,99 dolaru měsíčně.

    Ladislav Hagara | Komentářů: 0
    dnes 18:44 | Zajímavý článek

    Server Groklaw, zaměřený na kauzy jako právní spory SCO týkající se Linuxu, skončil před 12 lety, resp. doména stále existuje, ale web obsahuje spam propagující hazardní hry. LWN.net proto v úvodníku připomíná důležitost zachovávání komunitních zdrojů a upozorňuje, že Internet Archive je také jen jeden.

    Fluttershy, yay! | Komentářů: 1
    dnes 14:22 | Nová verze

    Jakub Vrána vydal Adminer ve verzi 5.4.0: "Delší dobu se v Admineru neobjevila žádná závažná chyba, tak jsem nemusel vydávat novou verzi, až počet změn hodně nabobtnal."

    Ladislav Hagara | Komentářů: 1
    dnes 13:22 | IT novinky

    V Německu slavnostně uvedli do provozu (en) nejrychlejší počítač v Evropě. Superpočítač Jupiter se nachází ve výzkumném ústavu v Jülichu na západě země, podle německého kancléře Friedricha Merze otevírá nové možnosti pro trénování modelů umělé inteligence (AI) i pro vědecké simulace. Superpočítač Jupiter je nejrychlejší v Evropě a čtvrtý nejrychlejší na světě (TOP500). „Chceme, aby se z Německa stal národ umělé inteligence,“ uvedl na

    … více »
    Ladislav Hagara | Komentářů: 10
    včera 04:11 | Komunita

    V Berlíně probíhá konference vývojářů a uživatelů desktopového prostředí KDE Plasma Akademy 2025. Při té příležitosti byla oznámena alfa verze nové linuxové distribuce KDE Linux.

    Ladislav Hagara | Komentářů: 1
    6.9. 17:11 | Nová verze

    Byl vydán Debian 13.1, tj. první opravná verze Debianu 13 s kódovým názvem Trixie a Debian 12.12, tj. dvanáctá opravná verze Debianu 12 s kódovým názvem Bookworm. Řešeny jsou především bezpečnostní problémy, ale také několik vážných chyb. Instalační média Debianu 13 a Debianu 12 lze samozřejmě nadále k instalaci používat. Po instalaci stačí systém aktualizovat.

    Ladislav Hagara | Komentářů: 2
    5.9. 23:44 | IT novinky

    Evropská komise potrestala Google ze skupiny Alphabet pokutou 2,95 miliardy eur (71,9 miliardy Kč) za porušení antimonopolní legislativy. Podle EK, která mimo jiné plní funkci antimonopolního orgánu EU, se Google dopustil protisoutěžních praktik ve svém reklamním byznysu. Google v reakci uvedl, že rozhodnutí považuje za chybné a hodlá se proti němu odvolat. EK ve věci rozhodovala na základě stížnosti Evropské rady vydavatelů. Podle

    … více »
    Ladislav Hagara | Komentářů: 42
    5.9. 23:11 | Komunita

    Podpora 32bitového Firefoxu pro Linux skončí v roce 2026. Poslední podporované 32bitové verze budou Firefox 144 a Firefox 140 s rozšířenou podporou, jehož podpora skončí v září 2026.

    Ladislav Hagara | Komentářů: 3
    5.9. 19:33 | IT novinky

    Společnost Raspberry Pi nově nabízí Raspberry Pi SSD s kapacitou 1 TB za 70 dolarů.

    Ladislav Hagara | Komentářů: 12
    5.9. 15:55 | Zajímavý software

    Microsoft BASIC pro mikroprocesor 6502 byl uvolněn jako open source. Zdrojový kód je k dispozici na GitHubu.

    Ladislav Hagara | Komentářů: 14
    Pro otevření více webových stránek ve webovém prohlížečí používám
     (83%)
     (7%)
     (2%)
     (3%)
     (3%)
     (2%)
    Celkem 156 hlasů
     Komentářů: 11, poslední 4.9. 16:12
    Rozcestník
    Štítky: není přiřazen žádný štítek

    null

    10.1.2006 17:09 | Linux | poslední úprava: 28.2.2006 16:03

    null        

    Hodnocení: 50 %

            špatnédobré        

    Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

    Komentáře

    Vložit další komentář

    10.1.2006 17:20 zabza | skóre: 52 | blog: Nad_sklenkou_cerveneho
    Rozbalit Rozbalit vše Re: Operace s vektory?
    http://en.wikipedia.org/wiki/Image:Complex_numbers_multiplication.png
    10.1.2006 17:22 Käyttäjä 11133 | skóre: 58 | blog: Ajattelee menneisyyttä
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Heh ten prázdný příspěvek má znamenat, že to nejde řešit? :-(
    10.1.2006 17:25 Käyttäjä 11133 | skóre: 58 | blog: Ajattelee menneisyyttä
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Heh omlouvám se, posunul se mi ten odkaz moc nízko, takže jsem ho neviděl. :-)
    10.1.2006 17:31 zabza | skóre: 52 | blog: Nad_sklenkou_cerveneho
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Aha, to mám/máš z toho, že jsem línej klikat na čudlík [<a>]... :-)
    10.1.2006 17:32 Käyttäjä 11133 | skóre: 58 | blog: Ajattelee menneisyyttä
    Rozbalit Rozbalit vše Re: Operace s vektory?
    ale stejně sem to z toho obrázku nějak nepochopil.
    10.1.2006 19:39 petr_p
    Rozbalit Rozbalit vše Re: Operace s vektory?
    X = A ⋅ B, O je pocatek souradneho systemu.

    Nasobeni dvou komplexnich cisel lze geometricky interpretovat jako podobnost dvou pravouhlych trojuhelniku s jednim spolecnym vrcholem.
    16.1.2006 19:40 kaaja
    Rozbalit Rozbalit vše Re: Operace s vektory?
    z1=a(cos(f)+i*sin(f)) z2=b(cos(g)+i*sin(g))

    z1*z2 = a*b(cos(f)*cos(g)-sin(f)*sin(g) + i*(cos(f)sin(g) + cos(g)*sin(g))) = a*b (cos(f+g)+i*sin(f+g))

    takze = secteme uhly od osy x a pak vynasobime delky ( to de graficky) a hotovo
    10.1.2006 17:20 S.
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Snad jsem spravne pochopil zadani: Jestlize cislo a = a1 + i*a2, b = b1 + i*b2, potom a*b = a1b1-a2b2 + i*(a1b2+a2b1)

    S.
    10.1.2006 17:23 Käyttäjä 11133 | skóre: 58 | blog: Ajattelee menneisyyttä
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Početně to řešit umím.
    10.1.2006 17:24 S.
    Rozbalit Rozbalit vše Re: Operace s vektory?
    No jo, nepochopil jsem zadani ...
    10.1.2006 17:32 VícNežNic | skóre: 42 | blog: Spáleniště | Ne dost daleko
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Proč bys chtěl něco řešit graficky?
    Copak toho není dost?
    10.1.2006 17:35 Käyttäjä 11133 | skóre: 58 | blog: Ajattelee menneisyyttä
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Protože mně tenhle problém zaujal.
    10.1.2006 17:52 VícNežNic | skóre: 42 | blog: Spáleniště | Ne dost daleko
    Rozbalit Rozbalit vše Re: Operace s vektory?
    No, mi to přijde jenom jako překreslení toho vzorečku. Což může být hezké pro představu, ale v žádném případě si nedokážu představit důvod proč takovým způsobem chtít něco opravdu počítat.
    Copak toho není dost?
    10.1.2006 17:32 Martin Beránek | skóre: 33 | blog: mousehouse | Brno
    Rozbalit Rozbalit vše Re: Operace s vektory?
    no zadna sranda to nebude a rucne bych to delat nechtel :(

    ps: zkuste si na ciselne ose vynasobyt dve cisla - treba 6.9 * 4.7 - a s komplexinma toho budete delat 4x vic

    ps2: rekl bych ze ten vzorec je jasnej navod
    never use rm after eight
    10.1.2006 17:34 Michal Kubeček | skóre: 71 | Luštěnice
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Vynásobte moduly, sečtěte argumenty. Nic grafičtějšího nevymyslíte. Můžete to opsat tak, že vyrobíte zobrazení složené ze stejnolehlosti (se středem v nule) a otočení (okolo nuly), které vám jedničku převede na první číslo, a podíváte se, kam se zobrazí druhé, ale to je vlastně totéž.
    10.1.2006 17:37 Dag | skóre: 25 | blog: bzuk
    Rozbalit Rozbalit vše Re: Operace s vektory?

    Nejprve předpokládáme, že jedno z čísel je komplexní jednotka. Potom součin komplexního čísla z a komplexní jednotky, dostaneme otočením obrazu čísla z kolem počátku o argument komplexní jednotky.

    Nyní předpokládáme, že jedno z čísel je reálné. Potom součin komplexního čísla s reálným číslem konstruktivně dostaneme na základě podobnosti. A když to dáme dohromady, je to hotovo.

    10.1.2006 17:39 Boris
    Rozbalit Rozbalit vše Re: Operace s vektory?
    1. Délka součinu = součin délek
    2. Úhel součinu sevřený s osou x = součet úhlů sevřených s osou x

    Plyne ze zápisu ve tvaru exponenciály:
    ( r1*exp(i*fi1) ) * ( r2*exp(i*fi2) ) = ( r1*r2 ) * ( exp(i(fi1+fi2)) )
    .. avatar 10.1.2006 17:59 .. | skóre: 4 | blog:
    Rozbalit Rozbalit vše Re: Operace s vektory?
    No pokud vezmes, ze chces nasobit cisla (komplexni) a*b, kde a=a.im*i+a.re, b=b.im*i+b.re (im je imaginarni slozka, re je realna) pak a*b = (a.im*i + a.re)*(b.im*i + b.re) = a.im*b.re*i + a.re*b.im*i + a.re*b.re - a.im*b.im.

    To je jedna z moznosti, zalezi na tom, v jakem tvaru ty cisla mate zadana. Mimoto http://en.wikipedia.org/wiki/Complex_numbers
    wake avatar 10.1.2006 21:08 wake | skóre: 30 | blog: wake | Praha
    Rozbalit Rozbalit vše Re: Operace s vektory?
    fi = fi1+fi2 |z| = |z1||z2|

    scitat uhle a nasobit usecky snad umite.
    Tento příspěvek má hlavičku i patičku!
    11.1.2006 13:23 Hynek (Pichi) Vychodil | skóre: 43 | blog: Pichi | Brno
    Rozbalit Rozbalit vše Re: Operace s vektory?

    x=|x|*e^(-i*a), y=|y|*e^(-i*b), x*y=|x|*|y|*e^(-i*(a+b))

    To zná každý elektrikář. Jinýmy slovy, sečíst úhly s reálnou osou a vynásobit vzdálenosti od počátku (absolutní hodnoty).

    x = |x|*e^(-i*a) = |x|*cos(a) + j*|x|*sin(a) = xre + j*ximg
    y = |y|*e^(-i*b) = |y|*cos(b) + j*|y|*sin(b) = yre + j*yimg
    x*y = (xre + j*ximg)*(yre + j*yimg) = xre*yre - ximg*yimg + j*(ximg*yre+yimg*xre) = |x|*cos(a)*|y|*cos(b) - |x|*sin(a)*|y|*sin(b) + j*(|x|*sin(a)*|y|*cos(b)+|y|*sin(b)*|x|*cos(a)) = |x|*|y|*cos(a+b)+j*|x|*|y|*sin(a+b) = |x|*|y|*(cos(a+b)+j*sin(a+b))

    XML je zbytečný, pomalý, nešikovný balast, znovu vynalézané kolo a ještě ke všemu šišaté, těžké a kýčovitě pomalované.
    11.1.2006 15:58 jirka
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Bohužel, každý elekrikář ví, že si napsal špatně.;-)
    Má to být:
    x = |x|*e^(i*a)
    y = |y|*e^(i*b)
    x*y = |x|*|y|*e^(i*(a+b))
    Doufám, že jsem se nesplet :-)
    11.1.2006 16:44 Hynek (Pichi) Vychodil | skóre: 43 | blog: Pichi | Brno
    Rozbalit Rozbalit vše Re: Operace s vektory?
    Pravdu díš. Euler
    XML je zbytečný, pomalý, nešikovný balast, znovu vynalézané kolo a ještě ke všemu šišaté, těžké a kýčovitě pomalované.
    23.1.2006 17:18 Honza Houštěk | skóre: 18
    Rozbalit Rozbalit vše Re: Operace s vektory?
    A co si predstavujete pod takovym "grafickym nasobenim v Gaussove rovine"? Pokud jde o nalezeni Eukleidovkse konstrukce, kterak ze dvou bodu v rovine (reprezentujici ty dva cinitele) sestrojit bod reprezentujici soucin, tak to je pomerne trivialni uloha vzhledem k tomu, ze (a+bi) * (c+di) = (ac-bd) + (ad+bc)i, tj. je treba umet konstruovat jen soucin a soucet/rozdil.

    Pokud vam jde o nejaky geometricky nahled na nasobeni komplexnich cisel, tak ten je patrny z tzv. goniometrickeho ci exponencialniho tvaru komplexniho cisla. Lze pozorovat (a snadno dokazat), ze nasobeni komplexnich cisel ma nasledujici dve vlastnosti:

    1) absolutni hodnota soucinu je soucinem absolutnich hodnot cinitelu

    2) argument (tj. orientovany uhel, ktery svira v Gaussove rovine spojnice obrazu daneho cisla a pocatku s kladnou realnou poloosou) soucinu je souctem argumentu cinitelu (modulo 2pi)

    Neboli A*(cos phi + i*sin phi) * B*(cos psi + i*sin psi) = A*B * (cos(phi+psi) + i*sin(phi+psi)). A,B jsou absolutni hodnoty cinitelu, phi,psi jejich argumenty. Jeste lepe to je patrne, pokud vite neco o exponencialni funkci v komplexnim oboru (exp(i*phi) = cos phi + i*sin phi).

    Velmi obsahla encyklopedie matematiky je na http://mathworld.wolfram.com/

    Založit nové vláknoNahoru

    ISSN 1214-1267   www.czech-server.cz
    © 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.