Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB) spolu s NSA a dalšími americkými úřady upozorňuje (en) na čínského aktéra Salt Typhoon, který kompromituje sítě po celém světě.
Společnost Framework Computer představila (YouTube) nový výkonnější Framework Laptop 16. Rozhodnou se lze například pro procesor Ryzen AI 9 HX 370 a grafickou kartu NVIDIA GeForce RTX 5070.
Google oznamuje, že na „certifikovaných“ zařízeních s Androidem omezí instalaci aplikací (včetně „sideloadingu“) tak, že bude vyžadovat, aby aplikace byly podepsány centrálně registrovanými vývojáři s ověřenou identitou. Tato politika bude implementována během roku 2026 ve vybraných zemích (jihovýchodní Asie, Brazílie) a od roku 2027 celosvětově.
Byla vydána nová verze 21.1.0, tj. první stabilní verze z nové řady 21.1.x, překladačové infrastruktury LLVM (Wikipedie). Přehled novinek v poznámkách k vydání: LLVM, Clang, LLD, Extra Clang Tools a Libc++.
Alyssa Anne Rosenzweig v příspěvku na svém blogu oznámila, že opustila Asahi Linux a nastoupila do Intelu. Místo Apple M1 a M2 se bude věnovat architektuře Intel Xe-HPG.
EU chce (pořád) skenovat soukromé zprávy a fotografie. Návrh "Chat Control" by nařídil skenování všech soukromých digitálních komunikací, včetně šifrovaných zpráv a fotografií.
Byly publikovány fotografie a všechny videozáznamy z Python konference PyCon US 2025 proběhlé v květnu.
Společnost xAI a sociální síť X amerického miliardáře Elona Muska zažalovaly firmy Apple a OpenAI. Viní je z nezákonné konspirace s cílem potlačit konkurenci v oblasti umělé inteligence (AI).
Byla vydána nová verze 9.16 z Debianu vycházející linuxové distribuce DietPi pro (nejenom) jednodeskové počítače. Přehled novinek v poznámkách k vydání.
Americká vláda se po převzetí zhruba desetiprocentního podílu ve výrobci čipů Intel chystá na další investice do vybraných firem. Na sociální síti Truth Social to napsal prezident Donald Trump. Jeho ekonomický poradce Kevin Hassett v rozhovoru v televizi CNBC řekl, že nemusí jít pouze o firmy z technologického sektoru, ale i z jiných odvětví.
Pátý díl nepravidelného seriálu o psaní video ovladačů pro Linux. Pokud jste ještě nečetli první díl, možná by stálo zato začít tam.
Než může aplikace začít pracovat s video zařízením, musí se s ovladačem dohodnout na tom, jak budou video data formátována. Takové dohadování může být docela komplikovaná záležitost, protože 1) podpora formátů v různých typech video hardwaru se dost výrazně liší a 2) provádění převodu formátů v jádře není vítáno. Aplikace tedy musí zjistit, které formáty hardware podporuje, a nastavit prostředí tak, aby to všem zúčastněným vyhovovalo. Tento článek se bude zabývat základy popisu formátů; další díl probere API implementované V4L2 ovladači pro dohadování o formátech s aplikacemi.
Prostor barev [colorspace] je v podstatě koordinační systém pro popis barev. Specifikace V4L2 jich popisuje několik, ale doopravdy používány jsou jen dva:
Kromě toho pokrývá tento barevný prostor i YUV a YCbCr. Toto znázornění vychází z potřeby mít možnost zobrazovat barevný televizní signál na monochromatických televizích. Takže hodnota Y (neboli "svítivost" [luminance]) je hodnota jasu [brightness]; když je zobrazena samostatně, dostaneme obraz v odstínech šedi. Hodnoty "chrominance" [barevný rozdíl] U a V (neboli Cb a Cr) popisují modré a červené části barvy; zelenou lze odvodit odečtením těchto částí od svítivosti. Převod mezi YUV a RGB však není tak docela prostý; na výběr je z několika vzorců.
YUV a YCbCr nejsou přesně totéž, i když se ty termíny často používají ve stejném významu.
Existuje docela dost dalších prostorů barev; většinou jde o varianty standardů souvisejících s televizí. Kompletní seznam najdete ve specifikaci V4L2.
Jak jsme si řekli, hodnoty pixelů jsou vyjadřovány n-ticemi, které obyčejně obsahují RGB nebo YUV hodnoty. Pro organizaci těchto n-tic do obrazu existují dvě nejčastěji používané metody:
Packed formáty se možná používají trochu častěji, především ve spojení s RGB, ale oba druhy lze hardwarem generovat a aplikace je mohou vyžadovat. Pokud video zařízení podporuje jak packed, tak planar formáty, ovladač by je měl uživatelskému prostoru nabízet oba.
Barevné formáty jsou v V4L2 API popsány pomocí mechanismu "fourcc" kódů. Tyto kódy jsou 32bitové hodnoty generované ze čtyř ASCII znaků. Lze s nimi tedy lehce manipulovat a jsou snadno čitelné. Když například vidíte kód barevného formátu 'RGB4', není nutné vyhledávat význam v tabulkách.
Kódy fourcc jsou využívány v mnoha různých případech, z nichž některé jsou starší než Linux. MPlayer je používá interně. Fourcc však označuje pouze mechanismus a neříká nic o tom, jaké kódy jsou vlastně používány - MPlayer má překládací funkci pro převod mezi fourcc kódy a těmi, které používá V4L2.
V popisech formátů (níže) jsou bajty vždy řazeny podle paměti - na little-endian stroji jsou nejméně významné bajty první. Nejméně významný bit každého bajtu je vpravo; u každého pole barev je nejsvětlejší odstín nejvýznamnější.
Název | fourcc | Byte 0 | Byte 1 | Byte 2 | Byte 3 | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V4L2_PIX_FORMAT_RGB332 | RGB1 | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_RGB444 | R444 | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_RGB555 | RGB0 | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_RGB565 | RGBP | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_RGB555X | RGBQ | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_RGB565X | RGBR | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_BGR24 | BGR3 | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_RGB24 | RGB3 | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_BGR32 | BGR4 | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_RGB32 | RGB4 | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_SBGGR8 | BA81 | ||||||||||||||||||||||||||||||||||||
Když jsou použity formáty s prázdným místem (v tabulce zobrazena jako šedá políčka), mohou to místo aplikace využít pro alfa hodnotu (průhlednost).
Jedná se o "Bayer" formát, který je obvykle dost blízko opravdovým datům ze senzorů většiny kamer. Zelené hodnoty jsou pro každý pixel, ale modré a červené jen pro každý druhý. V podstatě jde o to, že zelená nese důležitější informace o intenzitě, přičemž červená a modrá jsou - tam, kde chybějí - přes pixely interpolovány. Podobné to bude u YUV formátů.
Nejprve packed YUV formáty. Klíč pro čtení této tabulky:
= Y (intenzita) |
= U (Cb) |
= V (Cr) |
Název | fourcc | Byte 0 | Byte 1 | Byte 2 | Byte 3 | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V4L2_PIX_FORMAT_GREY | GREY | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_YUYV | YUYV | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_UYVY | UYVY | ||||||||||||||||||||||||||||||||||||
V4L2_PIX_FORMAT_Y41P | Y41P | ||||||||||||||||||||||||||||||||||||
Používá se i několik planar YUV formátů. Nemá cenu je všechny vykreslovat - vystačíme si s jedním příkladem. Běžně používaný formát "YUV 4:2:2" (V4L2_PIX_FMT_YUV422, fourcc 422P) využívá tři samostatná pole. Obrázek 4x4 by byl znázorněn takto:
Y plane: | ||||||||||||||||||||||||||||||||||||
U plane: | ||||||||||||||||||||||||||||||||||||
V plane: | ||||||||||||||||||||||||||||||||||||
Stejně jako u formátu Bayer i YUV 4:2:2 má jednu hodnotu U a jednu hodnotu V na každou druhou hodnotu Y; zobrazení obrázku vyžaduje interpolaci chybějících hodnot. Ostatní planar YUV formáty jsou:
Existuje ještě pár dalších YUV formátů, ale ty se používají jen zřídka; vizte kompletní seznam.
Dva další formáty, které se mohou hodit pro některé ovladače:
Kromě toho jsou ještě další formáty, některé proprietární; seznam opět součástí specifikace.
Když už formátům barev rozumíme, můžeme se podívat na to, jak V4L2 API popisuje formáty obrazu obecně. Hlavní strukturou je struct v4l2_pix_format (definována v <linux/videodev2.h>), která obsahuje tato pole:
Dohromady tyto parametry poměrně uceleně popisují buffer video dat. Aplikace může vyplnit strukturu v4l2_pix_format a vyžadovat v podstatě jakýkoliv formát, jaký si vývojář dokáže vymyslet. Na straně ovladače však musí být omezení na formáty, se kterými hardware umí pracovat. Takže každá V4L2 aplikace s ovladačem vyjednává ve snaze najít formát obrazu, který by byl jak podporovaný hardwarem, tak vhodný pro potřeby aplikace. V dalším díle se podíváme na to, jak toto vyjednávání vypadá z pohledu ovladače.
Nástroje: Tisk bez diskuse
Tiskni
Sdílej: