Byla vydána nová verze 1.26 programovacího jazyka Go (Wikipedie). Přehled novinek v poznámkách k vydání.
CrossOver, komerční produkt založený na Wine, byl vydán ve verzi 26. Přehled novinek v ChangeLogu. CrossOver 26 vychází z Wine 11.0, D3DMetal 3.0, DXMT 0.72, Wine Mono 10.4.1 a vkd3d 1.18. Do 17. února lze koupit CrossOver+ se slevou 26 %.
KiCad je nově k dispozici také jako balíček ve formátu AppImage. Stačí jej stáhnout, nastavit právo na spouštění a spustit [Mastodon, 𝕏].
Šenčenská firma Seeed Studio představila projekt levného robotického ramena reBot Arm B601, primárně coby pomůcky pro studenty a výzkumníky. Paže má 6 stupňů volnosti, dosah 650 mm a nosnost 1,5 kilogramu, podporované platformy mají být ROS1, ROS2, LeRobot, Pinocchio a Isaac Sim, krom toho bude k dispozici vlastní SDK napsané v Pythonu. Kompletní seznam součástek, videonávody a nejspíš i cena budou zveřejněny až koncem tohoto měsíce.
… více »Byla vydána nová verze 36.0, tj. první stabilní verze nové řady 36, svobodného multimediálního centra MythTV (Wikipedie). Přehled novinek a vylepšení v poznámkách k vydání.
Byl vydán LineageOS 23.2 (Mastodon). LineageOS (Wikipedie) je svobodný operační systém pro chytré telefony, tablety a set-top boxy založený na Androidu. Jedná se o nástupce CyanogenModu.
Od března budou mít uživatelé Discordu bez ověření věku pouze minimální práva vhodná pro teenagery.
Evropská komise (EK) předběžně shledala čínskou sociální síť pro sdílení krátkých videí TikTok návykovým designem v rozporu s unijním nařízením o digitálních službách (DSA). Komise, která je exekutivním orgánem Evropské unie a má rozsáhlé pravomoci, o tom informovala v tiskovém sdělení. TikTok v reakci uvedl, že EK o platformě vykreslila podle něj zcela nepravdivý obraz, a proto se bude bránit.… více »
Offpunk byl vydán ve verzi 3.0. Jedná se o webový prohlížeč běžící v terminálu a podporující také protokoly Gemini, Gopher a RSS. Přibyl nástroj xkcdpunk pro zobrazení XKCD v terminálu.
Promethee je projekt, který implementuje UEFI (Unified Extensible Firmware Interface) bindingy pro JavaScript. Z bootovacího média načítá a spouští soubor 'script.js', který může používat UEFI služby. Cílem je vytvořit zavaděč, který lze přizpůsobit pomocí HTML/CSS/JS. Repozitář se zdrojovými kódy je na Codebergu.
Původně jsem chtěl tenhle dotaz do pléna hodit do poradny, ale nebylo mi jasné do které ze stávajících skupin dotazů bych ho měl dát. Takže mi nezbylo než se otázat takhle. Zpracovávám v GIMPU skenované dokumenty, což obnáší aplikaci nejrůznějších filtrů, atp. Některé jsou náročné a trvají déle, jiné tak náročné nejsou. Bohužel ale netuším jakým způsobem bych mohl zjistit jak přesně trvají dlouho
Jde o to, že stejného výsledku lze dosáhnout mnoha různými způsoby, které se ovšem v konečném důsledku liší tím, kolik sežerou času a výpočetního výkonu. Což se dá ovšem jen těžko předem posoudit, když nevím, jak dlouho operace s určitými parametry trvá. Tj. jestli se vyplatí, nebo už ne.
Nenapadá někoho řešení, jakým způsobem by se to dalo zjistit?
Je možné že na to GIMP má i nějaké udělátko. Jenom o něm nevím, protože způsob, jakým je dokumentován, je taky pěkná tragédie.
Ale pokud budete mít k tomu nějakou užitečnou poznámku, určitě ji uvítám.
Aktuálně jsem vyřešil problém sice humpolácky, nicméně způsobem dostačujícím. Sledováním procesu přes strace.
strace -tT -e trace=read -p …
Chci-li zjistit, jak dlouho ta operace bude trvat, nahodím výše uvedeným způsobem strace na spuštěnou instanci gimpu.
Takhle nějak to vypadá např. při vypnutí zobrazení některé vrstvy:
14:42:36 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000090> 14:42:36 read(10, "\211PNG\r\n\32\n\0\0\0\rIHDR\0\0\0`\0\0\0N\10\6\0\0\0\337>\23"..., 65536) = 8708 <0.000178> 14:42:36 read(10, "", 65536) = 0 <0.000114> 14:42:41 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000044>
Jak vidíte, překreslení obrazu trvalo cca 5 sekund. A následující výpis demonstruje, jak to vypadalo, po aplikaci filtru "Rozostření pomocí mediánů". Něž se vygeneroval nový náhled, zabralo to 39 sekud.
14:45:05 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000102> 14:45:05 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000093> 14:45:45 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000157> 14:45:46 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000160> 14:45:46 read(10, "\211PNG\r\n\32\n\0\0\0\rIHDR\0\0\0`\0\0\0N\10\6\0\0\0\337>\23"..., 65536) = 8708 <0.000174> 14:45:46 read(10, "", 65536) = 0 <0.000123> 14:45:55 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000022>
Jak jste se mohli dozvědět z mého následujícího blogpostu o GIMPu, při hledání nástroje jsem – víceméně náhodou – narazil na to, kde má GIMP vlastní udělátko na sledování zátěže, které si můžete otevřít v postraním doku Okna → Dokovatelná dialogová okna → Sledování zátěže (Windows → Dockable dialogs → Dashboard) .
Nicméně to co mne zajímalo, se z něj stejně nedá zjistit. Ale může vám to pomoci při práci s velkými soubory, při kterých začnete narážet na limity vašeho HW k tomu, abyste zbytečně neprodlužovali svou práci tím, že budete mít zbytečně velké soubory s desítkami vrstev v situaci, kdy to není nutné. Více vi odkazovaný blogpost.
Tiskni
Sdílej: