Home Assistant včera představil svůj nejnovější oficiální hardware: Home Assistant Connect ZBT-2 pro připojení zařízení na sítích Zigbee nebo Thread.
Byla vydána verze 9.1 open source virtualizační platformy Proxmox VE (Proxmox Virtual Environment, Wikipedie) založené na Debianu. Přehled novinek v poznámkách k vydání a informačním videu.
Byl aktualizován seznam 500 nejvýkonnějších superpočítačů na světě TOP500. Nejvýkonnějším superpočítačem zůstává El Capitan od HPE (Cray) s výkonem 1,809 exaFLOPS. Druhý Frontier má výkon 1,353 exaFLOPS. Třetí Aurora má výkon 1,012 exaFLOPS. Nejvýkonnější superpočítač v Evropě JUPITER Booster s výkonem 1,000 exaFLOPS je na čtvrtém místě. Nejvýkonnější český superpočítač C24 klesl na 192. místo. Karolina, GPU partition klesla na 224. místo a Karolina, CPU partition na 450. místo. Další přehledy a statistiky na stránkách projektu.
Microsoft představil Azure Cobalt 200, tj. svůj vlastní SoC (System-on-Chip) postavený na ARM a optimalizovaný pro cloud.
Co způsobilo včerejší nejhorší výpadek Cloudflare od roku 2019? Nebyl to kybernetický útok. Vše začalo změnou oprávnění v jednom z databázových systémů a pokračovalo vygenerováním problém způsobujícího konfiguračního souboru a jeho distribucí na všechny počítače Cloudflare. Podrobně v příspěvku na blogu Cloudflare.
Byla vydána (Mastodon, 𝕏) první RC verze GIMPu 3.2. Přehled novinek v oznámení o vydání. Podrobně v souboru NEWS na GitLabu.
Eugen Rochko, zakladatel Mastodonu, tj. sociální sítě, která není na prodej, oznámil, že po téměř 10 letech odstupuje z pozice CEO a převádí vlastnictví ochranné známky a dalších aktiv na neziskovou organizaci Mastodon.
Byla vydána nová major verze 5.0 svobodného 3D softwaru Blender. Přehled novinek i s náhledy a videi v obsáhlých poznámkách k vydání. Videopředstavení na YouTube.
Cloudflare, tj. společnost poskytující "cloudové služby, které zajišťují bezpečnost, výkon a spolehlivost internetových aplikací", má výpadek.
Letos se uskuteční již 11. ročník soutěže v programování Kasiopea. Tato soutěž, (primárně) pro středoškoláky, nabízí skvělou příležitost procvičit logické myšlení a dozvědět se něco nového ze světa algoritmů – a to nejen pro zkušené programátory, ale i pro úplné začátečníky. Domácí kolo proběhne online od 22. 11. do 7. 12. 2025 a skládá se z 9 zajímavých úloh různé obtížnosti. Na výběru programovacího jazyka přitom nezáleží – úlohy jsou
… více »Původně jsem chtěl tenhle dotaz do pléna hodit do poradny, ale nebylo mi jasné do které ze stávajících skupin dotazů bych ho měl dát. Takže mi nezbylo než se otázat takhle. Zpracovávám v GIMPU skenované dokumenty, což obnáší aplikaci nejrůznějších filtrů, atp. Některé jsou náročné a trvají déle, jiné tak náročné nejsou. Bohužel ale netuším jakým způsobem bych mohl zjistit jak přesně trvají dlouho
Jde o to, že stejného výsledku lze dosáhnout mnoha různými způsoby, které se ovšem v konečném důsledku liší tím, kolik sežerou času a výpočetního výkonu. Což se dá ovšem jen těžko předem posoudit, když nevím, jak dlouho operace s určitými parametry trvá. Tj. jestli se vyplatí, nebo už ne.
Nenapadá někoho řešení, jakým způsobem by se to dalo zjistit?
Je možné že na to GIMP má i nějaké udělátko. Jenom o něm nevím, protože způsob, jakým je dokumentován, je taky pěkná tragédie.
Ale pokud budete mít k tomu nějakou užitečnou poznámku, určitě ji uvítám.
Aktuálně jsem vyřešil problém sice humpolácky, nicméně způsobem dostačujícím. Sledováním procesu přes strace.
strace -tT -e trace=read -p …
Chci-li zjistit, jak dlouho ta operace bude trvat, nahodím výše uvedeným způsobem strace na spuštěnou instanci gimpu.
Takhle nějak to vypadá např. při vypnutí zobrazení některé vrstvy:
14:42:36 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000090> 14:42:36 read(10, "\211PNG\r\n\32\n\0\0\0\rIHDR\0\0\0`\0\0\0N\10\6\0\0\0\337>\23"..., 65536) = 8708 <0.000178> 14:42:36 read(10, "", 65536) = 0 <0.000114> 14:42:41 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000044>
Jak vidíte, překreslení obrazu trvalo cca 5 sekund. A následující výpis demonstruje, jak to vypadalo, po aplikaci filtru "Rozostření pomocí mediánů". Něž se vygeneroval nový náhled, zabralo to 39 sekud.
14:45:05 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000102> 14:45:05 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000093> 14:45:45 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000157> 14:45:46 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000160> 14:45:46 read(10, "\211PNG\r\n\32\n\0\0\0\rIHDR\0\0\0`\0\0\0N\10\6\0\0\0\337>\23"..., 65536) = 8708 <0.000174> 14:45:46 read(10, "", 65536) = 0 <0.000123> 14:45:55 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000022>
Jak jste se mohli dozvědět z mého následujícího blogpostu o GIMPu, při hledání nástroje jsem – víceméně náhodou – narazil na to, kde má GIMP vlastní udělátko na sledování zátěže, které si můžete otevřít v postraním doku Okna → Dokovatelná dialogová okna → Sledování zátěže (Windows → Dockable dialogs → Dashboard) .
Nicméně to co mne zajímalo, se z něj stejně nedá zjistit. Ale může vám to pomoci při práci s velkými soubory, při kterých začnete narážet na limity vašeho HW k tomu, abyste zbytečně neprodlužovali svou práci tím, že budete mít zbytečně velké soubory s desítkami vrstev v situaci, kdy to není nutné. Více vi odkazovaný blogpost.
Tiskni
Sdílej: