Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie).
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 12.0 (Mastodon). Forgejo je fork Gitei.
Nová čísla časopisů od nakladatelství Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 155 (pdf) a Hello World 27 (pdf).
Hyprland, tj. kompozitor pro Wayland zaměřený na dláždění okny a zároveň grafické efekty, byl vydán ve verzi 0.50.0. Podrobný přehled novinek na GitHubu.
Patrick Volkerding oznámil před dvaatřiceti lety vydání Slackware Linuxu 1.00. Slackware Linux byl tenkrát k dispozici na 3,5 palcových disketách. Základní systém byl na 13 disketách. Kdo chtěl grafiku, potřeboval dalších 11 disket. Slackware Linux 1.00 byl postaven na Linuxu .99pl11 Alpha, libc 4.4.1, g++ 2.4.5 a XFree86 1.3.
Ministerstvo pro místní rozvoj (MMR) jako první orgán státní správy v Česku spustilo takzvaný „bug bounty“ program pro odhalování bezpečnostních rizik a zranitelných míst ve svých informačních systémech. Za nalezení kritické zranitelnosti nabízí veřejnosti odměnu 1000 eur, v případě vysoké závažnosti je to 500 eur. Program se inspiruje přístupy běžnými v komerčním sektoru nebo ve veřejné sféře v zahraničí.
Vláda dne 16. července 2025 schválila návrh nového jednotného vizuálního stylu státní správy. Vytvořilo jej na základě veřejné soutěže studio Najbrt. Náklady na přípravu návrhu a metodiky činily tři miliony korun. Modernizovaný dvouocasý lev vychází z malého státního znaku. Vizuální styl doprovází originální písmo Czechia Sans.
Vyhledávač DuckDuckGo je podle webu DownDetector od 2:15 SELČ nedostupný. Opět fungovat začal na několik minut zhruba v 15:15. Další služby nesouvisející přímo s vyhledáváním, jako mapy a AI asistent jsou dostupné. Pro některé dotazy během výpadku stále funguje zobrazování například textu z Wikipedie.
Více než 600 aplikací postavených na PHP frameworku Laravel je zranitelných vůči vzdálenému spuštění libovolného kódu. Útočníci mohou zneužít veřejně uniklé konfigurační klíče APP_KEY (např. z GitHubu). Z více než 260 000 APP_KEY získaných z GitHubu bylo ověřeno, že přes 600 aplikací je zranitelných. Zhruba 63 % úniků pochází z .env souborů, které často obsahují i další citlivé údaje (např. přístupové údaje k databázím nebo cloudovým službám).
Open source modální textový editor Helix, inspirovaný editory Vim, Neovim či Kakoune, byl vydán ve verzi 25.07. Přehled novinek se záznamy terminálových sezení v asciinema v oznámení na webu. Detailně v CHANGELOGu na GitHubu.
Původně jsem chtěl tenhle dotaz do pléna hodit do poradny, ale nebylo mi jasné do které ze stávajících skupin dotazů bych ho měl dát. Takže mi nezbylo než se otázat takhle. Zpracovávám v GIMPU skenované dokumenty, což obnáší aplikaci nejrůznějších filtrů, atp. Některé jsou náročné a trvají déle, jiné tak náročné nejsou. Bohužel ale netuším jakým způsobem bych mohl zjistit jak přesně trvají dlouho
Jde o to, že stejného výsledku lze dosáhnout mnoha různými způsoby, které se ovšem v konečném důsledku liší tím, kolik sežerou času a výpočetního výkonu. Což se dá ovšem jen těžko předem posoudit, když nevím, jak dlouho operace s určitými parametry trvá. Tj. jestli se vyplatí, nebo už ne.
Nenapadá někoho řešení, jakým způsobem by se to dalo zjistit?
Je možné že na to GIMP má i nějaké udělátko. Jenom o něm nevím, protože způsob, jakým je dokumentován, je taky pěkná tragédie.
Ale pokud budete mít k tomu nějakou užitečnou poznámku, určitě ji uvítám.
Aktuálně jsem vyřešil problém sice humpolácky, nicméně způsobem dostačujícím. Sledováním procesu přes strace.
strace -tT -e trace=read -p …
Chci-li zjistit, jak dlouho ta operace bude trvat, nahodím výše uvedeným způsobem strace na spuštěnou instanci gimpu.
Takhle nějak to vypadá např. při vypnutí zobrazení některé vrstvy:
14:42:36 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000090> 14:42:36 read(10, "\211PNG\r\n\32\n\0\0\0\rIHDR\0\0\0`\0\0\0N\10\6\0\0\0\337>\23"..., 65536) = 8708 <0.000178> 14:42:36 read(10, "", 65536) = 0 <0.000114> 14:42:41 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000044>
Jak vidíte, překreslení obrazu trvalo cca 5 sekund. A následující výpis demonstruje, jak to vypadalo, po aplikaci filtru "Rozostření pomocí mediánů". Něž se vygeneroval nový náhled, zabralo to 39 sekud.
14:45:05 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000102> 14:45:05 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000093> 14:45:45 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000157> 14:45:46 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000160> 14:45:46 read(10, "\211PNG\r\n\32\n\0\0\0\rIHDR\0\0\0`\0\0\0N\10\6\0\0\0\337>\23"..., 65536) = 8708 <0.000174> 14:45:46 read(10, "", 65536) = 0 <0.000123> 14:45:55 read(4, "\1\0\0\0\0\0\0\0", 16) = 8 <0.000022>
Jak jste se mohli dozvědět z mého následujícího blogpostu o GIMPu, při hledání nástroje jsem – víceméně náhodou – narazil na to, kde má GIMP vlastní udělátko na sledování zátěže, které si můžete otevřít v postraním doku Okna → Dokovatelná dialogová okna → Sledování zátěže (Windows → Dockable dialogs → Dashboard) .
Nicméně to co mne zajímalo, se z něj stejně nedá zjistit. Ale může vám to pomoci při práci s velkými soubory, při kterých začnete narážet na limity vašeho HW k tomu, abyste zbytečně neprodlužovali svou práci tím, že budete mít zbytečně velké soubory s desítkami vrstev v situaci, kdy to není nutné. Více vi odkazovaný blogpost.
Tiskni
Sdílej: