Na stránkách Evropské komise, na portálu Podělte se o svůj názor, se lze do 3. února podělit o názor k iniciativě Evropské otevřené digitální ekosystémy řešící přístup EU k otevřenému softwaru.
Společnost Kagi stojící za stejnojmenným placeným vyhledávačem vydala (𝕏) alfa verzi linuxové verze (flatpak) svého proprietárního webového prohlížeče Orion.
Firma Bose se po tlaku uživatelů rozhodla, že otevře API svých chytrých reproduktorů SoundTouch, což umožní pokračovat v jejich používání i po plánovaném ukončení podpory v letošním roce. Pro ovládání také bude stále možné využívat oficiální aplikaci, ale už pouze lokálně bez cloudových služeb. Dokumentace API dostupná zde (soubor PDF).
Jiří Eischmann se v příspěvku na svém blogu rozepsal o open source AdGuard Home jako domácí ochraně nejen před reklamou. Adguard Home není plnohodnotným DNS resolverem, funguje jako DNS forwarder s možností filtrování. To znamená, že když přijme DNS dotaz, sám na něj neodpoví, ale přepošle ho na vybraný DNS server a odpovědi zpracovává a filtruje dle nastavených pravidel a následně posílá zpět klientům. Dá se tedy používat k blokování reklamy a škodlivých stránek a k rodičovské kontrole na úrovni DNS.
AI Claude Code od Anthropicu lépe rozumí frameworku Nette, tj. open source frameworku pro tvorbu webových aplikací v PHP. David Grudl napsal plugin Nette pro Claude Code.
Byla vydána prosincová aktualizace aneb nová verze 1.108 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.108 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Na lasvegaském veletrhu elektroniky CES byl předveden prototyp notebooku chlazeného pomocí plazmových aktuátorů (DBD). Ačkoliv se nejedná o první nápad svého druhu, nepochybně to je první ukázka praktického použití tohoto způsobu chlazení v běžné elektronice. Co činí plazmové chladící akční členy technologickou výzvou je především vysoká produkce jedovatého ozonu, tu se prý podařilo firmě YPlasma zredukovat dielektrickou
… více »Patchouli je open source implementace EMR grafického tabletu (polohovací zařízení). Projekt je hostován na GitLabu.
Český Nejvyšší soud potvrdil, že česká právní úprava plošného uchování dat o elektronické komunikaci porušuje právo Evropské unie. Pravomocným rozsudkem zamítl dovolání ministerstva průmyslu a obchodu. To se teď musí omluvit novináři Českého rozhlasu Janu Cibulkovi za zásah do práv na ochranu soukromí a osobních údajů. Ve sporu jde o povinnost provozovatelů sítí uchovávat údaje, ze kterých lze odvodit, kdo, s kým a odkud komunikoval.
Google bude vydávat zdrojové kódy Androidu pouze dvakrát ročně. Ve 2. a 4. čtvrtletí.
Tiskni
Sdílej:
V neděli choď na mne s kombinatorikou ... řešení vidím a to mi stačí 
(4n)
Je celkem ( 3) způsobů jak vybrat tři body,
trojúhelník to nebude, když body leží na přímce -
(n)
tedy v (3) výberech pro každou stranu čtverce, výsledek je:
(4n) (n)
( 3) - 4*(3)
Já bych řekl, že první vrchol vybírám na kterékoliv straně čtverce, tedy 4.(n nad 1) možností, druhý vrchol na jedné ze zbývajících tří, tedy 3.(n nad 1) možností a poslední na jedné ze zbývajících dvou, tedy 2.(n nad 1) možností. To krát to krát to je suma sumárum 24n^3 možností.
Jasně, jsem pako. Těch se dvěma vrcholy na jedné straně a se třetím jinde je 4(n nad 2) + 3n.
Jasně, jsem pako. Těch se dvěma vrcholy na jedné straně a se třetím jinde je 4(n nad 2) + 3n.
24n^3
(n) ----- + 6n^3 - 6n^2 = 10n^3 - 6n^2
Je jich 4*(2)*3n, celkem je to tedy 6
Jo, to plus je překlep, patří tam samozřejmě krát 
(n)
Tři body můžeme vybrat (3) způsoby,
(p)
z toho leží v (3) možnostech na jedné přímce,
(n) (p)
tedy výsledek je (3) - (3).
to by mělo být totožné s tímto řešením:
počet trojúhelníků s vrcholy, které na přímce neleží,
(n - p)
je ( 3), počet trojúhelníků, které mají
(n - p)
na přímce právě jeden vrchol je p*( 2) a
počet trojúhelníků, které mají na přímce právě
(p)
dva vrcholy je (n - p)(2), dohromady to
dá celkový počet trojúhelníků
Tady mi to vychází stejně, tedy (n-p nad 3) + (n-p nad 2)(p nad 1) + (n-p nad 1)(p nad 2). První člen jsou trojúhelníky se všemi vrcholy mimo přímku, druhý trojúhelníky se dvěma vrcholy mimo přímku a jedním na n, třetí pak trojúhelníky se dvěma vrcholy na přímce a jedním mimo ni.
Po otrocké úpravě (bez záruky): (n - p)(4n^2 + 3np^2 - 11np - 6n - 3p^3 + 7p^2 + 6p + 2)/6. 
(n - p)(4n^2 + 3np^2 - 11np - 6n - 3p^3 + 7p^2 + 6p + 2)/6To je docela zvláštní výsledek, neboť počet trojúhelníků by měl být celočíslený, ale vzhledem k tomu, že se tam vyskytují koeficienty jako např. 11/6 nebo 7/6, tak si nejsem jist tou celočíselností.
Zvláštní jistě být může, nicméně není nutně špatný. Čitatel je vždy, jak ukazují následující tabulky, dělitelný i dvěma i třemi, tedy je dělitelný šesti, tedy je výsledek celý.
n p | n-p || 4n^2 | 3np^2 | 11np | 6n | 3p^3 | 7p^2 | 6p | 2 | sum | product ----+-----++------+-------+------+----+------+------+----+---+-----+-------- S S | S || | S S L | L || S | S | S | S | L | L | S | S | S | S L S | L || S | S | S | S | S | S | S | S | S | S L L | S || | S n%3 p%3 | n-p | 4n^2 | 3np^2 | 11np | 6n | 3p^3 | 7p^2 | 6p | 2 | sum | product --------+-----+------+-------+------+----+------+------+----+---+-----+-------- 0 0 | 0 | | 0 1 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 2 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 0 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 1 1 | 0 | | 0 2 1 | 1 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 0 0 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 1 2 | 2 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 0 2 2 | 0 | | 0
Nic dalšího už dneska nedokazuju 