Byla vydána nová verze 25.10.31 svobodného multiplatformního video editoru Shotcut (Wikipedie) postaveného nad multimediálním frameworkem MLT. Shotcut je vedle zdrojových kódů k dispozici také ve formátech AppImage, Flatpak a Snap.
O víkendu probíhá konference OpenAlt 2025 (Stream). Na programu je spousta zajímavých přednášek. Pokud jste v Brně, stavte se. Vstup zdarma.
Josef Průša představil novou velkoformátovou uzavřenou CoreXY 3D tiskárnu Prusa CORE One L a nový open source standard chytrých cívek OpenPrintTag i s novou přepracovanou špulkou.
Na GOG.com běží Autumn Sale. Při té příležitosti je zdarma hororová počítačová hra STASIS (ProtonDB: Platinum).
Ubuntu 25.10 má nově balíčky sestavené také pro úroveň mikroarchitektury x86-64-v3 (amd64v3).
Byla vydána verze 1.91.0 programovacího jazyka Rust (Wikipedie). Podrobnosti v poznámkách k vydání. Vyzkoušet Rust lze například na stránce Rust by Example.
Ministerstvo průmyslu a obchodu vyhlásilo druhou veřejnou soutěž v programu TWIST, který podporuje výzkum, vývoj a využití umělé inteligence v podnikání. Firmy mohou získat až 30 milionů korun na jeden projekt zaměřený na nové produkty či inovaci podnikových procesů. Návrhy projektů lze podávat od 31. října do 17. prosince 2025. Celková alokace výzvy činí 800 milionů korun.
Google v srpnu oznámil, že na „certifikovaných“ zařízeních s Androidem omezí instalaci aplikací (včetně „sideloadingu“) tak, že bude vyžadovat, aby aplikace byly podepsány centrálně registrovanými vývojáři s ověřenou identitou. Iniciativa Keep Android Open se to snaží zvrátit. Podepsat lze otevřený dopis adresovaný Googlu nebo petici na Change.org.
Byla vydána nová verze 18 integrovaného vývojového prostředí (IDE) Qt Creator. S podporou Development Containers. Podrobný přehled novinek v changelogu.
Cursor (Wikipedie) od společnosti Anysphere byl vydán ve verzi 2.0. Jedná se o multiplatformní proprietární editor kódů s podporou AI (vibe coding).
y = e ^ 1/4x dx = 4 * 1/y * dyPak puvodni integral redukujes na jednoduchy priklad
int sqrt(y^4 - 6) dy
dx = dy/(e^(x/4))
dx = dy/(e^(x/4)*(1/4)), ale nevede to IMHO k výsledku
Ale je dost mozny, ze to jde snadnejc, priznavam.
K tomuhle se člověk dostane prakticky okamžitě. Ale dál… V Rektorysovi jsem našel takovouhle větu (kap. 13.4, věta 1):
Integrály ∫x^m(a+bx^n)^p (a≠0, b≠0, n≠0, p≠0) lze vyjádřit pomocí elementárních funkcí tehdy a jen tehdy, je-li aspoň jedno z čísel p, (m+1)/n, (m+1)/n+p číslo celé.
Tady mi vychází m=0, n=4, p=1/2, tedy p=1/2, (m+1)/n=1/4, (m+1)/n+p=3/4, takže buď je ta věta špatně (nepravděpodobné), udělali jsme špatně substituci (všichni?) nebo ta primitivní funkce prostě vzorečkem napsat nejde. Není v tom příkladu určitý integrál s šikovnými mezemi?
Když to neumíš ani ty, tak to já nemám šanci. A Maple byl na mě sprostý, když jsem mu to podstrčil.
/heh/
Jsem na tom asi tak, že jdu zítra na písemku z integrálního počtu a integrály jsem pořádně počítal naposled před rokem na gymplu
Nebo teda spíš "
", poněvadž to vůbec není dobrý... No nic, našel jsem si teď nějaké sbírky na internetu, tak jdu něco spočítat. I když to je bez šance, se to do zítřka naučit 
Kdyby někoho zajímalo, jak to asi asi bude vypadat, tak se může podívat tady.
... "Proč pláčeš, hochu?" zeptal se ho.
Chlapec k Ježíši zdvihl své uplakané oči a odvětil: "Jsem matfyzák!"
I usedl Ježíš k chlapci a plakal s ním. 
t = e^(x/8) dx = 8/e^(x/8) dttakže dostanu
8t * (t^8 - 6)^1/2 dtA to už půjde přinejmenším hrubou silou. Pustí se na to 6× per partes, kde se bude zvyšovat exponent u výrazu
t^m (a snižovat u (t^8 - 6)^n/2 – ale to ničemu nevadí) a nakonec se provede substituce za t^8 - 6 (vedle už bych měl mít nasysleno t^7).
. Nicméně i ten s tím má zdá se trochu problém. Alespoň můj oblíbený maplet zobrazující i postup výpočtu s tímhle nějak nehnul a když jsem to naťukal přímo do Maplu, tak z toho vylezl jakýsi hnusný zlomek plný odmocnin a jakési eliptické funkce
.
)
Sice jsem o Maximě psal článek, ale zase tak ji nefandím
Někde na netu je stránka, která takových příkladů ukazuje fůru. Její autor to chtěl prodat za velké peníze Maplu, ale ti mu peníze nedali, tak to dal na web.
Když se e^(x/4) vezme jako sqrt(e^(x/2)) a odmocniny se vynásobí, tak Maxima hodí výsledek. (Počítat se mi to už nechce, stejně se musím učit na zítřejší zápočet z prográmka...)
Hint:integrate(sqrt(exp(3*x/2)-6*exp(x/2)),x);
Tiskni
Sdílej: