Svobodná historická realtimová strategie 0 A.D. (Wikipedie) byla vydána ve verzi 28 (0.28.0). Její kódový název je Boiorix. Představení novinek v poznámkách k vydání. Ke stažení také na Flathubu a Snapcraftu.
Multimediální server a user space API PipeWire (Wikipedie) poskytující PulseAudio, JACK, ALSA a GStreamer rozhraní byl vydán ve verzi 1.6.0 (Bluesky). Přehled novinek na GitLabu.
UBports, nadace a komunita kolem Ubuntu pro telefony a tablety Ubuntu Touch, vydala Ubuntu Touch 24.04-1.2 a 20.04 OTA-12.
Byla vydána (Mastodon, 𝕏) nová stabilní verze 2.0 otevřeného operačního systému pro chytré hodinky AsteroidOS (Wikipedie). Přehled novinek v oznámení o vydání a na YouTube.
WoWee je open-source klient pro MMORPG hru World of Warcraft, kompatibilní se základní verzí a rozšířeními The Burning Crusade a Wrath of the Lich King. Klient je napsaný v C++ a využívá vlastní OpenGL renderer, pro provoz vyžaduje modely, grafiku, hudbu, zvuky a další assety z originální kopie hry od Blizzardu. Zdrojový kód je na GitHubu, dostupný pod licencí MIT.
Byl představen ICT Supply Chain Security Toolbox, společný nezávazný rámec EU pro posuzování a snižování kybernetických bezpečnostních rizik v ICT dodavatelských řetězcích. Toolbox identifikuje možné rizikové scénáře ovlivňující ICT dodavatelské řetězce a na jejich podkladě nabízí koordinovaná doporučení k hodnocení a mitigaci rizik. Doporučení se dotýkají mj. podpory multi-vendor strategií a snižování závislostí na vysoce
… více »Nizozemský ministr obrany Gijs Tuinman prohlásil, že je možné stíhací letouny F-35 'jailbreaknout stejně jako iPhony', tedy upravit jejich software bez souhlasu USA nebo spolupráce s výrobcem Lockheed Martin. Tento výrok zazněl v rozhovoru na BNR Nieuwsradio, kde Tuinman naznačil, že evropské země by mohly potřebovat větší nezávislost na americké technologii. Jak by bylo jailbreak možné technicky provést pan ministr nijak nespecifikoval, nicméně je známé, že izraelské letectvo ve svých modifikovaných stíhačkách F-35 používá vlastní software.
Nové číslo časopisu Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 162 (pdf).
Sdružení CZ.NIC, správce české národní domény, zveřejnilo Domain Report za rok 2025 s klíčovými daty o vývoji domény .CZ. Na konci roku 2025 bylo v registru české národní domény celkem 1 515 860 s koncovkou .CZ. Průměrně bylo měsíčně zaregistrováno 16 222 domén, přičemž nejvíce registrací proběhlo v lednu (18 722) a nejméně pak v červnu (14 559). Podíl domén zabezpečených pomocí technologie DNSSEC se po několika letech stagnace výrazně
… více »Google představil telefon Pixel 10a. S funkci Satelitní SOS, která vás spojí se záchrannými složkami i v místech bez signálu Wi-Fi nebo mobilní sítě. Cena telefonu je od 13 290 Kč.
y = e ^ 1/4x dx = 4 * 1/y * dyPak puvodni integral redukujes na jednoduchy priklad
int sqrt(y^4 - 6) dy
dx = dy/(e^(x/4))
dx = dy/(e^(x/4)*(1/4)), ale nevede to IMHO k výsledku
Ale je dost mozny, ze to jde snadnejc, priznavam.
K tomuhle se člověk dostane prakticky okamžitě. Ale dál… V Rektorysovi jsem našel takovouhle větu (kap. 13.4, věta 1):
Integrály ∫x^m(a+bx^n)^p (a≠0, b≠0, n≠0, p≠0) lze vyjádřit pomocí elementárních funkcí tehdy a jen tehdy, je-li aspoň jedno z čísel p, (m+1)/n, (m+1)/n+p číslo celé.
Tady mi vychází m=0, n=4, p=1/2, tedy p=1/2, (m+1)/n=1/4, (m+1)/n+p=3/4, takže buď je ta věta špatně (nepravděpodobné), udělali jsme špatně substituci (všichni?) nebo ta primitivní funkce prostě vzorečkem napsat nejde. Není v tom příkladu určitý integrál s šikovnými mezemi?
Když to neumíš ani ty, tak to já nemám šanci. A Maple byl na mě sprostý, když jsem mu to podstrčil.
/heh/
Jsem na tom asi tak, že jdu zítra na písemku z integrálního počtu a integrály jsem pořádně počítal naposled před rokem na gymplu
Nebo teda spíš "
", poněvadž to vůbec není dobrý... No nic, našel jsem si teď nějaké sbírky na internetu, tak jdu něco spočítat. I když to je bez šance, se to do zítřka naučit 
Kdyby někoho zajímalo, jak to asi asi bude vypadat, tak se může podívat tady.
... "Proč pláčeš, hochu?" zeptal se ho.
Chlapec k Ježíši zdvihl své uplakané oči a odvětil: "Jsem matfyzák!"
I usedl Ježíš k chlapci a plakal s ním. 
t = e^(x/8) dx = 8/e^(x/8) dttakže dostanu
8t * (t^8 - 6)^1/2 dtA to už půjde přinejmenším hrubou silou. Pustí se na to 6× per partes, kde se bude zvyšovat exponent u výrazu
t^m (a snižovat u (t^8 - 6)^n/2 – ale to ničemu nevadí) a nakonec se provede substituce za t^8 - 6 (vedle už bych měl mít nasysleno t^7).
. Nicméně i ten s tím má zdá se trochu problém. Alespoň můj oblíbený maplet zobrazující i postup výpočtu s tímhle nějak nehnul a když jsem to naťukal přímo do Maplu, tak z toho vylezl jakýsi hnusný zlomek plný odmocnin a jakési eliptické funkce
.
)
Sice jsem o Maximě psal článek, ale zase tak ji nefandím
Někde na netu je stránka, která takových příkladů ukazuje fůru. Její autor to chtěl prodat za velké peníze Maplu, ale ti mu peníze nedali, tak to dal na web.
Když se e^(x/4) vezme jako sqrt(e^(x/2)) a odmocniny se vynásobí, tak Maxima hodí výsledek. (Počítat se mi to už nechce, stejně se musím učit na zítřejší zápočet z prográmka...)
Hint:integrate(sqrt(exp(3*x/2)-6*exp(x/2)),x);
Tiskni
Sdílej: