abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×
    včera 13:22 | IT novinky

    Steve Jobs a superpočítač Cray-1 budou vyobrazeny na pamětních jednodolarových mincích vyražených v příštím roce v rámci série Americká inovace. Série má 57 mincí, tj. 57 inovací. Poslední 4 mince budou vyraženy v roce 2032.

    Ladislav Hagara | Komentářů: 3
    včera 12:22 | Pozvánky

    Byl zveřejněn průběžně aktualizovaný program konference OpenAlt 2025 o otevřeném softwaru a datech, IT bezpečnosti, DIY a IoT. Konference proběhne o víkendu 1. a 2. listopadu v prostorách FIT VUT v Brně. Vstup je zdarma.

    Ladislav Hagara | Komentářů: 0
    včera 12:00 | IT novinky

    Senát včera opětovně nepřijal návrh ústavního zákona, který měl do Listiny základních práv a svobod zakotvit právo občanů platit v hotovosti nebo být off-line. Návrh předložila skupina senátorů již v roce 2023. Senát dnes návrh neschválil, ale ani nezamítl. Pokud by ho přijal, dostala by ho k projednání Sněmovna a vyjádřila by se k němu vláda.

    Ladislav Hagara | Komentářů: 9
    16.10. 23:55 | Nová verze

    V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 13.0 (Mastodon). Forgejo je fork Gitei.

    Ladislav Hagara | Komentářů: 0
    16.10. 14:22 | Bezpečnostní upozornění

    Společnost Eclypsium se na svém blogu rozepsala o bezpečnostním problému počítačů Framework. Jedná se o zranitelnost v UEFI umožňující útočníkům obejít Secure Boot.

    Ladislav Hagara | Komentářů: 1
    16.10. 02:33 | Nová verze

    Editor kódů Zed (Wikipedie) po macOS a Linuxu s verzí 0.208.4běží také ve Windows.

    Ladislav Hagara | Komentářů: 7
    15.10. 17:44 | IT novinky

    Apple dnes představil 14palcový MacBook Pro, iPad Pro a Apple Vision Pro s novým čipem M5.

    Ladislav Hagara | Komentářů: 34
    15.10. 13:55 | Nová verze

    Debian pro mobilní zařízení Mobian (Wikipedie) byl vydán ve verzi 13 Trixie. Nová stabilní verze je k dispozici pro PINE64 PinePhone, PinePhone Pro a PineTab, Purism Librem 5, Google Pixel 3a a 3a XL, OnePlus 6 a 6T a Xiaomi Pocophone F1.

    Ladislav Hagara | Komentářů: 2
    15.10. 13:11 | IT novinky

    Operátor O2 představil tarif Datamanie 1200 GB . Nový tarif přináší 1200 GB dat s neomezenou 5G rychlostí, a také možnost neomezeného volání do všech sítí za 15 Kč na den. Při roční variantě předplatného zákazníci získají po provedení jednorázové platby celou porci dat najednou a mohou je bezstarostně čerpat kdykoli během roku. Do 13. listopadu jej O2 nabízí za zvýhodněných 2 988 Kč. Při průměrné spotřebě tak 100 GB dat vychází na 249 Kč měsíčně.

    Ladislav Hagara | Komentářů: 15
    15.10. 12:33 | Bezpečnostní upozornění

    Byly publikovány informace o útoku na zařízení s Androidem pojmenovaném Pixnapping Attack (CVE-2025-48561). Aplikace může číst citlivá data zobrazovaná jinou aplikací. V demonstračním videu aplikace čte 2FA kódy z Google Authenticatoru.

    Ladislav Hagara | Komentářů: 1
    Jaké řešení používáte k vývoji / práci?
     (38%)
     (46%)
     (19%)
     (21%)
     (24%)
     (18%)
     (21%)
     (18%)
     (18%)
    Celkem 231 hlasů
     Komentářů: 14, poslední 14.10. 09:04
    Rozcestník

    Dotaz: Algoritmus na náhodné rozdělení dle gaussovy křivky

    Jakub Lucký avatar 26.7.2009 23:06 Jakub Lucký | skóre: 40 | Praha
    Algoritmus na náhodné rozdělení dle gaussovy křivky
    Přečteno: 3056×
    Programuji si takovou netriviální diskrétní simulaci a potřeboval bych poradit s jedním algoritmem.

    Součástí mé simulace je odchod lidí z práce na oběd. Ten probíhá v přesně ohraničeném časovému úseku (dejme tomu 11:00 - 14:00) se špičkou ve 12:30... Tím nám vzniká jakási (dejme tomu symetrická) křivka, podle které bych potřeboval generovat náhodné časy odchodu na oběd.

    Stručně řečeno: Potřebuji vygenerovat X náhodných čísel v nějakém intervalu, které při poskládání vytvoří gaussovu křivku... Jak na to?

    Doufám, že je vysvětlení jasné, už mi z toho jde trochu hlava kolem...

    Díky za pomoc
    If you understand, things are just as they are; if you do not understand, things are just as they are.

    Odpovědi

    26.7.2009 23:34 Let_Me_Be | skóre: 20 | blog: cat /proc/idea/current | Brno
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Hledej implementaci generatoru nahodnych cisel, ktery dokaze generovat podle nastaveneho rozlozeni. Pro C++ to umi napriklad Boost.
    Linked in profil - Můj web - Nemůžete vyhrát hádku s blbcem. Nejdřív vás stáhne na svoji úroveň a pak ubije zkušenostmi.
    Jakub Lucký avatar 27.7.2009 00:34 Jakub Lucký | skóre: 40 | Praha
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    To mě ani nenapadlo, že bych dělal "reinventing the wheel"...

    Má někdo tip na nějakou Python knihovnu která tohle umí?
    If you understand, things are just as they are; if you do not understand, things are just as they are.
    27.7.2009 09:40 Jan Martinek | skóre: 43 | blog: johny | Brno
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky

    Řekněme, že chci vygenerovat deset hodnot s normálním rozdělením, střední hodnotou pět a "sigmou" (odmocninou z rozptylu) jedna:

     

    >>> from scipy import *
    >>> random.normal(5,1,10)
    array([ 4.17654928,  5.42693759,  2.65380726,  6.30024096,  5.91105815,
            6.26047915,  3.8240613 ,  5.48209872,  5.05101277,  3.30617717])
    

    A je to :-)

    27.7.2009 06:48 pht | skóre: 48 | blog: pht
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Stačí když použijete normální generátor náhodných čísel od 0 do 1 a výsledek pošlete jako parametr do kvantilové funkce. U gausse je tato funkce poměrně složitá, popis algoritmu a implementace lze najít např http://home.online.no/~pjacklam/notes/invnorm/
    In Ada the typical infinite loop would normally be terminated by detonation.
    27.7.2009 09:30 ivan
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky

    Hmm, a nestacilo by vygenerovat n cisel, secist je a pak vydelit n?.

     

    27.7.2009 09:49 Filip Jirsák | skóre: 67 | blog: Fa & Bi
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Průměr n náhodných čísel bude mít zase stejný tvar rozdělení, jako původních n čísel, ne?
    27.7.2009 10:12 x22
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Nie.
    27.7.2009 10:39 Filip Jirsák | skóre: 67 | blog: Fa & Bi
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    No jo, ona náhodná čísla vygenerovaná v počítači asi budou patřit do nějakého omezeného intervalu…
    27.7.2009 23:56 Martin | skóre: 10 | blog: Nádraží Perdido
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Důvod pro normální rozdělení průměrů posloupností stejně rozdělených náhodných veličin je v něčem jiném.
    27.7.2009 10:28 pht | skóre: 48 | blog: pht
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Pokud si pamatuju dobře tak střední hodnota (="průměr") má normální rozdělení, takže by to asi tak šlo: vezmete např 1000 čísel s uniformním rozdělením od N do M (=rand()), spočtete střední hodnotu, máte jedno náhodné číslo s normálním rozdělením, vezmete dalších 1000, spočtete stř. h., máte další náhodné č., ... postupně vám vyjde gauss s mí=(M+N)/2 a sigma užnevímkolik.

    Ale spotřebuje to nepoměrně víc náhodných čísel než kvantilová funkce, přes kterou se to obvykle dělá.
    In Ada the typical infinite loop would normally be terminated by detonation.
    27.7.2009 10:48 Martin | skóre: 10 | blog: Nádraží Perdido
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    To záleží na tom, co by ta čísla generovalo. Třeba takové rand() % n by bylo pro výše uvedenou simulaci pravděpodobně nepoužitelné. To by asi chtělo použít nějaký propracovanější generátor.

    Pokud by nezáleželo až tak na jazyku, udělal bych to v R. Tam je aspoň trochu jistota, že to bude dávat rozumné hodnoty pro různá rozdělení, má to i vlastní programovací jazyk, dělá to grafy... Na simulace ideální věc. Na Pravděpodobnosti a statistice jsme v něm dělali zápočtový projekt, taky diskrétní simulaci.
    27.7.2009 10:52 pht | skóre: 48 | blog: pht
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Třeba takové rand() % n by bylo pro výše uvedenou simulaci pravděpodobně nepoužitelné.
    Proč?
    In Ada the typical infinite loop would normally be terminated by detonation.
    27.7.2009 11:10 Martin | skóre: 10 | blog: Nádraží Perdido
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Když jsem si s tím kdysi hrál, tak mi to nedávalo dostatečně rovnoměrně rozdělené hodnoty. Ale možná to tehdy bylo jenom nějaké zkriplené.

    Určitě ale existují třeba pro takové C++ mnohem lepší a spolehlivější generátory.
    27.7.2009 11:17 Martin | skóre: 10 | blog: Nádraží Perdido
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    (Samozřejmě záleží hlavně na tom, jak moc seriózní tu simulaci člověk potřebuje.)
    27.7.2009 12:59 pht | skóre: 48 | blog: pht
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    IMHO stačí číst z /dev/urandom (na Linuxu).
    In Ada the typical infinite loop would normally be terminated by detonation.
    27.7.2009 23:57 Martin | skóre: 10 | blog: Nádraží Perdido
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Je to možné, takhle jsem to zatím nikdy nezkoušel. Ani vlastně nevím, jak /dev/urandom přesně funguje. Otestuju to a zkusím porovnat.
    27.7.2009 12:33 podlesh | skóre: 38 | Freiburg im Breisgau
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    V dokumentaci výslovně varují před použitím modulo. Když už, tak rand() * N / RAND_MAX

    27.7.2009 12:59 pht | skóre: 48 | blog: pht
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    To je ale jen v nějaké referenční implementaci.
    In Ada the typical infinite loop would normally be terminated by detonation.
    27.7.2009 13:56 podlesh | skóre: 38 | Freiburg im Breisgau
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Pravda, záleží na algoritmu a "Linux C Library use the same random number generator as random() and srandom(), so the lower-order bits should be as random as the higher-order bits"

    27.7.2009 10:08 Vojtěch Horký | skóre: 39 | blog: Vojtův zápisník | Praha
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Tohle by mělo jít bez problémů simulovat v R (a přihodím ještě odkaz s obrázkem).
    I am always ready to learn although I do not always like to be taught. (W. Churchill)
    27.7.2009 13:09 Radovan
    Rozbalit Rozbalit vše Dotaz nematematika

    Jak je velký rozdíl v průběhu mezi Gaussovou křivkou a obyčejnou sinusoidou?

    hodnota=int(maxvyska*(1-cos(index*pi/limit)))

    X
    X
    XXXX
    XXXXXXXXX
    XXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXX
    XXXXXXXXX
    XXXX
    X
    X

    27.7.2009 13:44 petr_p | skóre: 59 | blog: pb
    Rozbalit Rozbalit vše Re: Dotaz nematematika
    Rozdíl je přesně 1 :D (Za předpokladu, že normální rozložení bereme od −∞ do ∞ a sinus od 0 do π.)
    27.7.2009 23:45 Radovan
    Rozbalit Rozbalit vše Re: Dotaz nematematika

    Mě šlo o tvar té křivky, ne o přesná čísla, interval toho mého grafu je <0;2π> Jen tak od oka bych totiž řekl, že ty průběhy jsou stejné...

    28.7.2009 08:30 pht | skóre: 48 | blog: pht
    Rozbalit Rozbalit vše Re: Dotaz nematematika
    Tak to je opravdu jen od oka ;)
    In Ada the typical infinite loop would normally be terminated by detonation.
    28.7.2009 09:24 Radovan
    Rozbalit Rozbalit vše Re: Dotaz nematematika

    Právě proto se ptám :-D

    28.7.2009 09:58 Jan Martinek | skóre: 43 | blog: johny | Brno
    Rozbalit Rozbalit vše Re: Dotaz nematematika

    Tato debata je naprosto mimo původní téma. Ale když máme tu okurkovou sezónu ...

    Místo "sinusovky" jsem použil kosinus na druhou (neptej se proč). Nakreslím-li to do stejného grafu spolu s Gaussovkou, dostanu tohle:

    kf.fyz.fce.vutbr.cz/pub/gauss_cos2.png

    A na co že ses vlastně ptal?

     

    28.7.2009 11:37 Radovan
    Rozbalit Rozbalit vše Re: Dotaz nematematika

    Jo, je to trochu off-topic, takže díky. Ta moje "kosinusovka" je nejen otočená a posunutá, ale i roztažená, takže ve vrcholech se s gaussovkou potkává. Ptal jsem se na tu spodní část, na tom tvém obrázku je ten rozdíl už vidět.

    Jakub Lucký avatar 28.7.2009 12:16 Jakub Lucký | skóre: 40 | Praha
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Všem děkuji za návrhy...
    If you understand, things are just as they are; if you do not understand, things are just as they are.
    28.9.2012 15:10 Wrunx
    Rozbalit Rozbalit vše Re: Algoritmus na náhodné rozdělení dle gaussovy křivky
    Možná už to je OT, ale: #Python 2.7 gaussian_values = [random.gauss(1, .5) for i in range(1000)]

    Založit nové vláknoNahoru

    Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

    ISSN 1214-1267   www.czech-server.cz
    © 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.