Dánské ministerstvo pro digitální záležitosti má v plánu přejít na Linux a LibreOffice [It's FOSS News].
V úterý Google vydal Android 16. Zdrojové kódy jsou k dispozici na AOSP (Android Open Source Project). Chybí (zatím?) ale zdrojové kódy specifické pro telefony Pixel od Googlu. Projekty jako CalyxOS a GrapheneOS řeší, jak tyto telefony nadále podporovat. Nejistá je podpora budoucích Pixelů. Souvisí to s hrozícím rozdělením Googlu (Google, Chrome, Android)?
Byla vydána (𝕏) květnová aktualizace aneb nová verze 1.101 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.101 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
V Brně na FIT VUT probíhá třídenní open source komunitní konference DevConf.CZ 2025. Vstup je zdarma, nutná je ale registrace. Na programu je celá řada zajímavých přednášek, lightning talků, meetupů a workshopů. Přednášky lze sledovat i online na YouTube kanálu konference. Aktuální dění lze sledovat na Matrixu, 𝕏 nebo Mastodonu.
Vyloučení technologií, které by mohly představovat bezpečnostní riziko pro stát, má umožnit zákon o kybernetické bezpečnosti, který včera Senát schválil spolu s novelami navazujících právních předpisů. Norma, kterou nyní dostane k podpisu prezident, počítá rovněž s prověřováním dodavatelů technologií pro stát. Normy mají nabýt účinnosti od třetího měsíce po jejich vyhlášení ve Sbírce zákonů.
Open source platforma Home Assistant (Demo, GitHub, Wikipedie) pro monitorování a řízení inteligentní domácnosti byla vydána v nové verzi 2025.6.
Po Red Hat Enterprise Linuxu a AlmaLinuxu byl v nové stabilní verzi 10.0 vydán také Rocky Linux. Přehled novinek v poznámkách k vydání.
Bylo vydáno Eclipse IDE 2025-06 aneb Eclipse 4.36. Představení novinek tohoto integrovaného vývojového prostředí také na YouTube.
Americká filmová studia Walt Disney a Universal Pictures podala žalobu na provozovatele populárního generátoru obrázků pomocí umělé inteligence (AI) Midjourney. Zdůvodňují to údajným porušováním autorských práv. V žalobě podané u federálního soudu v Los Angeles označují firmu za „bezednou jámu plagiátorství“, neboť podle nich bez povolení bezostyšně kopíruje a šíří postavy z filmů jako Star Wars, Ledové království nebo Já, padouch, aniž by do nich investovala jediný cent.
Ultra Ethernet Consortium (UEC), jehož cílem je optimalizace a další vývoj Ethernetu s důrazem na rostoucí síťové požadavky AI a HPC, vydalo specifikaci Ultra Ethernet 1.0 (pdf, YouTube).
Fg=g*(double)m;
nebo by muselo být m typu double.
if (fabs(Fg - Fy) < 0.01) {
Nemůžeš testovat rovnost dvou čísel s plovoucí desetinou čárkou. A to v žádném jazyce.Přesně tak. Někdy není dobré věřit tomu, co člověk vidí, ať už v debuggeru, editoru nebo na výstupu. Stejný problém se mnou kdysi "zacvičil" v Delphi a Interbase/Firebirdu. Čísla vypadala, že mají 2 des. místa, ale v reálu tam byl ještě drobek v x-tém řádu.
Jinak operace s reálnými čísly na počítači komutativní jsou, ale nejsou asociativní.Za urcitych okonlosti nejsou ani komutativni - pokud se nepocita v plne presnoti, dochazi k chybam v dusledku konverze pri nacitani a ukladani dat z/do koprocesoru. Presneji je to popsano treba na Wikipedii, u popisu rozdilu klasickeho FPU a SSE2. Pak zalezi, jakym zpusobem je vzorec zpracovan a poradi promenych muze ovlivnit presnost vysledku. Prakticky je ale pravdepodobnost neceho takoveho v bezne praxi velmi mala, ale je dobre to vedet.
V Moskovskom gosudarstvennom universitětě postrojili trojíčnuju sčotnuju mašínu Saturn.Některé nástroje jsou na některé úlohy vhodnější než jiné. (typo 3=4 nechme stranou)
Je jasné, že zase ne všechna existující matematická reálná čísla lze vůbec v počítači reprezentovat - ale tady je zase úplně jedno, jestli jde o pevnou, nebo plovoucí řádovou čárku, nebo třeba logaritmickou, či jinou reprezentaci v počítači, to platí pro všechno. Neexistuje možnost mít na počítači taková čísla, aby vyjádřila celý matematický pojem reálného čísla. Nejde to.Presneji receno, mnozina reprezentovatelnych cisel v pocitaci ma vzdy mohutnost (kardinalitu) pouze mnoziny celych cisel (napr. kazde cislo muzete pretypovat ci prevest na nejaky celociselny typ), ktera je nekonecna (v pocitaci jen teoreticky), ale spocetna (kazdemu prvku muzete priradit pritozene cislo, treba diagonalizaci). Ale mnozina realnych cisel ma vyssi mohutnost, protoze je nejen nekonecna, ale i nespocetna, tj. mezi kazda dve cela nebo racionalni cisla muzete umistit nekonecne mnoho cisel iracionalnich. Zjednodusene receno: mnozina cisel reprezentovatelnych na pocitaci je sice (teoreticky) nekonecna, ale je nekonecnekrat mensi nez mnozina realnych cisel. Ale moc nad tim nedumejte, nebo se z toho zblaznite jako chudak Cantor. Prakticky se pomoci plovouci radove carky daji presne reprezentovat jen cela cisla do velikosti mantisy a jejich nasobky vynasobene 2 na rosah exponentu. Cokoliv jineho uz muze byt nepresne. U necelych cisel jsou presna jen ta, ktera jdou prevest na racionalni cislo, jehoz delitel je mocnina dvou. Cokoliv jineho dava nekonecny binarni rozvoj a je tudiz nepresne. Pokud budete pouzivat bignums, kde jsou cisla reprezenovana racionalnimy cisly (delenec/delitel), tak muzete presne reprezentovat tak velka racionalni cisla, na ktera vam staci pamet. Ale jakekoliv iracionalni cislo (Pi, e, odmocniny atd.) je mozne reprezentovat jen a pouze jako aproximaci s konecou presnosti.
Ale mnozina realnych cisel ma vyssi mohutnost, protoze je nejen nekonecna, ale i nespocetna, tj. mezi kazda dve cela nebo racionalni cisla muzete umistit nekonecne mnoho cisel iracionalnich.Mezi libovolnými dvěma racionálními čísly najdete taky nekonečně mnoho racionálních čísel. To ale neznamená, že by množina racionálních čísel byla nespočetná. (Ne)spočetnost je definována podle (ne)existence bijekce na množinu přirozených čísel.
resneji receno, mnozina reprezentovatelnych cisel v pocitaci ma vzdy mohutnost (kardinalitu) pouze mnoziny celych cisel (napr. kazde cislo muzete pretypovat ci prevest na nejaky celociselny typ), ktera je nekonecna (v pocitaci jen teoreticky), ale spocetna (kazdemu prvku muzete priradit pritozene cislo, treba diagonalizaci). Ale mnozina realnych cisel ma vyssi mohutnost, protoze je nejen nekonecna, ale i nespocetnaCoz je sice pravda, ale je to v tomto kontextu irelevantni. Lowenheim-skolemova veta nam totiz zarucuje, ze existuje spocetna podmnozina realnych cisel, ktera obsahuje vsechna 'zajimava' realna cisla. A tedy staci reprezentovat tuto spocetnou podmnozinu. Nicmene algoritmy pracujici nad takovou podmnozinou stejne nejspis nedobehnou v rozumnem case ...
A jako další pokud navrhuji spočítat kolik je nula děleno nulou - to totiž v reálných číslech jde.Zdroj by nebyl?
"keďže tie dve premenné sa rovnajú!"Opravdu? Doporučil bych změnit ten printf na tenhle:
printf("Fg = %f\nFy = %f\n, Fg - Fy = %0.30f\n", Fg, Fy, Fg - Fy);Pak doporučuji zamyslet se nad tím, jak v dvojkové soustavě (potažmo v plovoucí řádové čárce) vypadá třeba číslo 0.01 (9.81 je 981 * 0.01). Povinná četba pro Tebe.
double a = 0.0; double b = 2.0 - 2.0; if (a == b) printf("Jsi nula!");Není tam sebemenší důvod, proč by tam bylo cokoli špatně, žádná zaokrouhlovací ani jiná chyba aproximace se v tomto případě vůbec neobjeví. Zde je porovnávání reálných čísel naprosto v pořádku. Nebo další:
bool is_nan(double x) { return (x != x); }Také je porovnávání naprosto v pořádku, není problém. Prostě pak se tyhle věci musí řešit tak, že se do zdrojáku napíše:
#ifdef __GNUC__ vypni_debilni_nedomysleny_gcc_warning #elif _MSVC_VER vypni_debilni_nedomyslene_ms_warningy #endifNejlépe do globálního headeru připojeného všemi moduly.
double x = ?; if (x != x) printf("Nerovnaji se");
double vrat_cislo(double x) { return x; } double a = ?; double b = vrat_cislo(x);
double vrat_cislo(double x) { return x; } double a = ?; double b = vrat_cislo(a);
Tiskni
Sdílej: