Oficiálně byl vydán Android 13. Více na blogu věnovaném vývojářům a samozřejmě v poznámkách k vydání na AOSP (Android Open Source Project).
GNOME slaví 25 let. Přesně před pětadvaceti lety odeslal Miguel de Icaza do diskusního listu GTK+ email, který je považován za zahájení projektu GNOME, jehož cílem bylo vyvinout prostředí podobné CDE a KDE, ale založené výhradně na svobodném softwaru.
Kamera Intel MIPI IPU6 v noteboocích Lenovo ThinkPad X1 Carbon nebo Dell XPS 13 9315/9320 potřebuje na Linuxu proprietární firmware. Navíc aktuálně běží pouze na opatchovaném Linuxu 5.15. Nejenom Greg Kroah-Hartman z těchto důvodů koupi těchto notebooků nedoporučuje. Zajímavé je, že Dell XPS 9315 získal certifikaci pro Ubuntu.
Nejnovější glibc rozbíjí Easy Anti-Cheat. Řada her tak přestala fungovat. V glibc 2.36 byla odstraněna podpora DT_HASH, jež je právě v Easy Anti-Cheat od Epic Games používána. Nejnovější glibc se již dostala například do Arch Linuxu. Tam je problém řešen balíčkem glibc 2.36-2 s vrácenou podporou DT_HASH.
V knihovně pro kompresi dat zlib (Wikipedie) byla objevena bezpečnostní chyba CVE-2022-37434 s vážností CVSS 9.8. Opravená upstream verze zatím nevyšla. Chyba se samozřejmě týká i softwarů s bundlovanou zlib, viz například vydání rsync 3.2.5.
Linus Torvalds vydal Linux 6.0-rc1. Podpora programovacího jazyka Rust se tam nedostala. Kódové jméno bylo změněno ze "Superb Owl" na "Hurr durr I'ma ninja sloth".
JuiceFS dospěl do verze 1.0. Jedná se o distribuovaný souborový systém kompatibilní s POSIX, HDFS a S3. Architektura JuiceFS sestává ze 3 částí: JuiceFS Client, Data Storage (S3, Azure Blob, OpenStack Swift, Ceph, MinIO, …) a Metadata Engine (Redis, TiKV, MySQL/MariaDB, PostgreSQL, SQLite, …). Zdrojové kódy JuiceFS jsou k dispozici na GitHubu pod licencí Apache 2.0.
O víkendu probíhá online The Raku Conference 2022, tj. konference věnovaná programovacímu jazyku Raku.
Včera skončila bezpečnostní konference Black Hat USA 2022 (Twitter) a začala bezpečnostní konference DEF CON 30 (Twitter). V rámci Black Hat byly vyhlášeny výsledky letošní Pwnie Awards (Twitter). Pwnie Awards oceňují to nejlepší, ale i to nejhorší z IT bezpečnosti (bezpečnostní Oscar a Malina v jednom).
Vývojáři PostgreSQL oznámili vydání verzí 14.5, 13.8, 12.12, 11.17, 10.22 a 15 Beta 3. Opraveno je více než 40 chyb a také zranitelnost CVE-2022-2625. Upstream podpora verze 10 končí 10. listopadu letošního roku.
RTFM - Read Tumič's FlaMes!
S Dijkstrovým algoritmem pro vyhledávání nejkratší cesty v ohodnoceném grafu se již setkal asi každý, kdo se v programování dostal alespoň o trochu dále, než k obligátnímu "Hello World!".
Notoricky známý o tomto algoritmu je pak fakt, že jeho asymptotická složitost
při použití prioritní fronty implementované jako
binární halda je
O(|H|log|U|)
. Již méně známé, i když z algoritmu jasně vyplývající,
je ale to, že tato prioritní fronta musí kromě obvyklých operací
push()
a pop()
umožňovat i změnu priority prvků
uvnitř fronty (a následné obnovení fronty). A to se v okamžiku, kdy narazí kosa
na kámen a vy jste nuceni algoritmus implementovat v nějakém programovacím
jazyku, ukazuje jako poměrně problematická záležitost. Minimálně pokuď je
zvoleným jazykem C++. Prioritní fronta ze standartní šablonové knihovny STL
totiž touto vlastností neoplývá...
Pokuď vám nejde o každou instrukci a můžete si dovolit určité (a právě velikost tohoto "určité" je oč tu dneska běží) zhoršení časové složitosti, lze nicméně tento problém obejít a Dijkstrův algoritmus upravit následovně:
Vertex *start, *current, *neighbour; Edge *e; start->setDistance(0); queue.push(start); while (!queue.empty()) { current = queue.top(); queue.pop(); if (!current->getVisited()) { current->setVisited(true); e = current->getFirstEdge(); while (e != NULL) { neighbour = e->getEnd(); if ((neighbour->getDistance() == -1) // -1 = nekonečno || (neighbour->getDistance() > current->getDistance() + e->getLength())) { neighbour->setDistance(current->getDistance() + e->getLength()); neighbour->setPrev(current); } queue.push(neighbour); e = e->getNext(); } } }
(Graf je implementován pomocí seznamu následníků)
Úprava spočívá v přidání atributu visited (bool)
ke každému
uzlu. Tento atribut slouží k určení, zda už byl uzel objeven či nikoliv
a umožňuje rozhodnout, zda se s daným uzlem na vrcholu fronty zabývat či
nikoliv. Druhou změnou totiž je, že pokud některý ze sousedů právě
zpracovávaného uzlu zkracuje cestu do aktuálního uzlu, není u něj pouze upravena
vzdálenost, ale je znovu zařazen do fronty (na místo odpovídající upravené
vzdálenosti). Při odebírání uzlu z fronty je pak "platný" pouze první výskyt
daného uzlu, ostatní je možné(nutné) ignorovat.
Uvedená modifikace zůstává (alespoň doufám korektní co se týče nalezených
nejkratších cest, otázkou ale je, jak tyto úpravy změní časovou složitost
algoritmu. Zcela jistě se zvýší režie zařazování uzlů do fronty, ale změní se
i složitost asymptotická? Může fronta asymptoticky přerůst |U|? Jak se toto
zhoršení projeví na běžných grafech typu "silniční síť"? Bude toto zhoršení tak
výrazné, že celý algoritmus "znehodnotí"? To jsou otázky, které čekají na
opravdové programátory ve vašich řadách. Já si své teorie a odhady pojídače koláčků zatím nechám pro sebe (podělím se o ně s vámi radši až v diskuzi ke "článku"
.
Tiskni
Sdílej:
Ty asi nebudeš Pražák, co?!
Mimochodom, vlastnosť visited musíš mať implementovanú aj v pôvodnej verzii algoritmu.
Nemusím. Ne-mu-sím! Standartně jsou všechny vrcholy zařazeny do fronty při inicializaci algoritmu a jejich náležení/nenáležení frontě již samo o sobě udává, zda-li byl vrchol již "objeven" či nikoliv.
Tohle jsou samozřejmě další dobře známé vlastnosti Dijkstrova algoritmu (dokonce i ta možnost využití Fibonacciho haldy se udává snad v každém popisu algoritmu), některé vlastnosti jsem dokonce zmínil v textu, ale oč tu běží je čistě implementační záležitost a vlastnosti "přiohnutého" algoritmu.
Mohl bys tedy ukázat pseudokód (rozuměj popis algoritmu), který by bez této "funkce" fungoval?
Uááá. Agoritmus, který tuto funkci nepotřebuje je právě ten ukázkový kód. O něm to celý je!
A pokud ne, jak je možné, že se o tom "moc neví"?
To že se o nutnosti této funkce použité fronty "moc neví" je myšleno tak, že si to člověk naplno uvědomí, až když musí algoritmus implementovat, protože takovou frontu obyčejně nemá k dispozici. Rozhodně to ale neni nějaký zajímavý a málo probádaný teoretický aspekt Dijkstrova algoritmu jako takového.
Ale tohle nám asi neříkali ani na matfyzuPredmet slozitost, fibbonaciho haldy i jejich aplikace v Dijstrove algoritmu se probiraly... ;).
B____C \ / \/ A | | Ddélky hrany tyto d(A,D)=3, d(A,C)=4, d(A,B)=1, d(B,C)=1 začneme v A, do fronty přijde B(1), D(3), C(4); v dalším kroku teda zkoumám B, C dám nový odhad 2 takže fronta "nevisited" vrcholů je D(3), C(2) což by asi být nemělo, ne? (kdyby z D vycházela nějaká hrana a na ní byl nalepenej nějakej graf H, přidali bychom ještě hranu CD s ohodnocením třeba 0.5, tak se správně nenajde nejkratší cesta do H přes AB, BC, CD, ..)
Možná to neni z popisu zcela zřejmý, ale použitá fronta je samozřejmě stále prioritní. Situace, že by v ní byla posloupnost D(3), C(2) tak nemůže nastat.
Prošel jsem si tebou uváděnej příklad, a nevidim v tom problém, na danym grafu algoritmus funguje korektně.
Možná to neni z popisu zcela zřejmý, ale použitá fronta je samozřejmě stále prioritní. Situace, že by v ní byla posloupnost D(3), C(2) tak nemůže nastat.Tak to jsem teda nepochopil. Píšeš, že "Prioritní fronta ze standartní šablonové knihovny STL totiž touto vlastností neoplývá...", kde "touto vlastností" sem pochopil jako změna priority. Tedy jsem se domníval, že fronta 3, 4, 5 se nepřeuspořádá, pokud změním prioritu u druhého prvku na 2, tedy bude v podobě 3, 2, 5. Takhle to teda není? Pokud ne, tak jsem nějak nepochopil celý blogpost. Jinak na tom "nakresleném grafu" by to neselhalo, domnívám se, že by to selhalo až na grafu, kde z D vede nějaká hrana a přidáme ještě hranu CD váhy 0.5 (což jsem naznačil v minulém příspěvku v závorce).
Tak to jsem teda nepochopil. Píšeš, že "Prioritní fronta ze standartní šablonové knihovny STL totiž touto vlastností neoplývá...", kde "touto vlastností" sem pochopil jako změna priority. Tedy jsem se domníval, že fronta 3, 4, 5 se nepřeuspořádá, pokud změním prioritu u druhého prvku na 2, tedy bude v podobě 3, 2, 5. Takhle to teda není? Pokud ne, tak jsem nějak nepochopil celý blogpost.
Změnu priority fronta z STL neumožňuje, proto se taky místo změny priority přidává uzel do fronty znovu, čímž se samozřejmě zařadí na správné místo. Vrchol tedy může být ve frontě několikrát, přičemž jen jeho první výskyt je "platný".
Jinak na tom "nakresleném grafu" by to neselhalo, domnívám se, že by to selhalo až na grafu, kde z D vede nějaká hrana a přidáme ještě hranu CD váhy 0.5 (což jsem naznačil v minulém příspěvku v závorce).
Uvažoval jsem samozřejmě ten rozšířený graf (s hranou CD)
A Kefalín, čo Vy si predstavujete pod takým "důkaz správnosti algoritmu"?!
Obávám se, že ten už si budeš muset udělat sám. Nejsem matfyzák, takže se do podobných "experimentů" pouštím jen v případech krajní nouze, což zrovna tenhle není...
Slíbil jsem, že zde vyslovím můj názor na složitost takto modifikovaného algoritmu, která je IMHO (a už to tady zaznělo stále O(|H|log|U|)
.
Jediné co se mění je počet prvků(uzlů) v prioritní frontě, který oproti "originálnímu" algoritmu může být až |U|^2. Nicméně proto, že log(|U|^2) = 2log|U| = O(log|U|)
, zůstává asymptotická časová složitost algoritmu O(|H|log|U|)
. Skutečná složitost nicméně samozřejmě naroste, ale na "běžných" grafech IMHO nijak výrazně.
Nějaké námitky?
Tak si odpovím sám. Zas tak růžový to asi přece jenom nebude... "Hlavní" cyklus se může provést až |H|*|U|
, zařazení do fronty pak má složitost log(|H|*|U|)
. Celková asymptotická složitost řešení tedy spíše bude O(|H|*|U| + log(|H|*|U|)) = O(|H|*|U|)
, tedy horší, než u "originálu".