Meta představila prototyp náramku, který snímá elektrickou aktivity svalů (povrchová elektromyografie, EMG) a umožňuje jemnými gesty ruky a prstů ovládat počítač nebo různá zařízení. Získané datové sady emg2qwerty a emg2pose jsou open source.
Byla vydána (𝕏) nová verze 25.7 open source firewallové a routovací platformy OPNsense (Wikipedie). Jedná se o fork pfSense postavený na FreeBSD. Kódový název OPNsense 25.7 je Visionary Viper. Přehled novinek v příspěvku na fóru.
Před 40 lety, 23. července 1985, společnost Commodore představila první počítač Amiga. Jednalo se o počítač "Amiga od Commodore", jenž byl později pojmenován Amiga 1000. Mělo se jednat o přímou konkurenci počítače Apple Macintosh uvedeného na trh v lednu 1984.
T‑Mobile USA ve spolupráci se Starlinkem spustil službu T-Satellite. Uživatelé služby mohou v odlehlých oblastech bez mobilního signálu aktuálně využívat satelitní síť s více než 650 satelity pro posílání a příjem zpráv, sdílení polohy, posílání zpráv na 911 a příjem upozornění, posílání obrázků a krátkých hlasových zpráv pomocí aplikace Zprávy Google. V plánu jsou také satelitní data.
Společnost Proxmox Server Solutions stojící za virtualizační platformou Proxmox Virtual Environment věnovala 10 000 eur nadaci The Perl and Raku Foundation (TPRF).
Byla vydána nová verze 2.4.65 svobodného multiplatformního webového serveru Apache (httpd). Řešena je bezpečnostní chyba CVE-2025-54090.
Společnost Proton AG stojící za Proton Mailem a dalšími službami přidala do svého portfolia AI asistenta Lumo.
Amazon koupil společnost Bee zaměřenou na nositelnou osobní AI aktuálně nabízející náramek Pioneer (YouTube) s mikrofony zaznamenávající vše kolem [𝕏, LinkedIn].
Společnost Teufel nedávno představila svůj první open source Bluetooth reproduktor MYND.
Byla vydána verze 4.2 multiplatformního integrovaného vývojového prostředí (IDE) pro rychlý vývoj aplikaci (RAD) ve Free Pascalu Lazarus (Wikipedie). Využíván je Free Pascal Compiler (FPC) 3.2.2.
Já bych neřekl, že Ruby bylo zvýhodněno. Prostě je tam šikovná optimalizace, který nikde jinde není.LISP pro jistotu z diskuse vynecháme úplně. Koho by zajímala prehistorie, že? Pro hnidopichy: trou prehistorií myslím to, že tato technika v lispu již dávno vyšla z módy (alespoň pokud jsem dobře informován).
Ta optimalizace je ve všech Lispech od konce šedesátých let...
Něco, co znemožňuje nad datovým typem integer efektivně provádět aritmetické operace, bych optimalizací rozhodně nenazýval...
Na vlastní oči jsem viděl věci, které jsou vyznavačům Lispu zapovězené...
Jak si představuješ, že při aritmeticko-logickejch operacích zachováš bez dodatečný režie spodní bity tak, aby pro lisp měl výsledek stále stejnej typ? Jak bez dodatečný režie použiješ instrukce porovnání (které jsou závislé na příznacích, které jsou závislé na výsledcích aritmetických operací...)?! Instrukce prakticky všech CPU jsou zkrátka navržený (a tudíž optimální) na to, že integer má n (8, 16, 32, ...) bitů, ne n-3...
; SLIME 2007-11-23 CL-USER> (declaim (optimize (speed 3) (safety 0) (debug 0))) ; No value CL-USER> (defun sel (x y z) (declare (type fixnum x y z)) (the fixnum (if (< x 42) (+ y z) (* y z)))) SEL CL-USER> (disassemble #'sel) ; 03689D6F: 4881FA50010000 CMP RDX, 336 ; no-arg-parsing entry point ; 76: 7C17 JL L1 ; 78: 488BD7 MOV RDX, RDI ; 7B: 48C1FA03 SAR RDX, 3 ; 7F: 480FAFD6 IMUL RDX, RSI ; 83: L0: 488D65F0 LEA RSP, [RBP-16] ; 87: F8 CLC ; 88: 488B6DF8 MOV RBP, [RBP-8] ; 8C: C20800 RET 8 ; 8F: L1: 488D1437 LEA RDX, [RDI+RSI] ; 93: EBEE JMP L0 ; 95: 90 NOP ; 96: 90 NOP ; 97: 90 NOP ; 98: 90 NOP ; 99: 90 NOP ; 9A: 90 NOP ; 9B: 90 NOP ; 9C: 90 NOP ; 9D: 90 NOP ; 9E: 90 NOP ; 9F: 90 NOP ; NIL CL-USER>Já nevím. Lispu je IMHO úplně ukradený, kolik bitů má slovo, 16, 32, 18, 36, 48 - není problém, byl implementovaný na tolika šílených architekturách, že se s tím autoři implementací naučili žít (a porvat). Ale můžeš zkusit tenhle stroják ještě urychlit.
Například:
; 7B: 48C1FA03 SAR RDX, 3
je krásná ukázka dodatečný režie (hodnotu proměnné musíš o 3, tedy počet bitů zabraný LISPem na informace o typu, aritmeticky zrotovat do prava, aby si proměnnou mohl pomocí IMUL vynásobit a výsledek byl správně), kterou daný způsob reprezentace přináší.
Ehm, tím "zrotováním" je samozřejmě myšlen klasickej aritmetickej shift... ale moji assembleristé mi jistě rozumí
Ptal ses na to, jak tato implementace znemožňuje efektivně provádět operace na integerech. To jsem ti snad ukázal jasně, i na tvém příkladu "optimálního" kódu.
To že máš představu, že jenom díky takové implementaci můžeš mít efektivní práci s pamětí a tudíž je to optimalizace je tvůj problém. Já prostě takovej handl za optimalizaci nepovažuju, když vím, že můžu mít obojí (minimální paměťové nároky i maximální rychlost vykonávání kódu)
$ lua -e 'print((0x100000000000000 + 1) % 2)' 0
Tahání více dat z RAM je dneska určitě větší zlo, než nějaké ty instrukce navíc, o tom žádná. Smysle příspěvku bylo ukázat, že neexistuje nic jako "optimální (ve smyslu rychlosti vykonávání kódu) vysokoúrovňový jazyk", ať se marketingové oddělení SUNu nebo Kyosuke snaží sebevíc. Vždy je to "něco za něco".
že v Javě to spotřebuje 43,5 MB
No jo, ale on potřebuje, aby sloupeček s Javou byl pětkrát vyšší, než Ruby. To tam nemůže dát 43.5MB.
Zkousel jsem jeste MS implementaci .net ve virt. stroji.
int[] pole;
pole = new int[8*1024*1024];
ma cely proces: 36900kiB.
skoro ekvivalent pomoci generiky jak bylo uvedeno v blogpostu: 37140kiB.
Pole typu object do ktereho se nasazeji zaboxovane Inty taktez podle blogpostu: 141648kiB
>>> from array import array >>> a = array('I', xrange(8*1024*1024)) >>> a[:5] array('I', [0L, 1L, 2L, 3L, 4L]) >>> a[-5:] array('I', [8388603L, 8388604L, 8388605L, 8388606L, 8388607L]) >>> len(a.tostring()) 33554432
Ukazuje to na příkladu pole pro 8 milionů integerů (tedy 32 MiB dat)
Co je to za platformu, kde má integer velikost 4.19B?
Tiskni
Sdílej: