Byla vydána (𝕏) zářijová aktualizace aneb nová verze 1.105 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.105 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Ve Firefoxu bude lepší správa profilů (oddělené nastavení domovské stránky, nastavení lišt, instalace rozšíření, uložení hesla, přidání záložky atd.). Nový grafický správce profilů bude postupně zaváděn od 14.října.
Canonical vydal (email) Ubuntu 25.10 Questing Quokka. Přehled novinek v poznámkách k vydání. Jedná se o průběžné vydání s podporou 9 měsíců, tj. do července 2026.
ClamAV (Wikipedie), tj. multiplatformní antivirový engine s otevřeným zdrojovým kódem pro detekci trojských koní, virů, malwaru a dalších škodlivých hrozeb, byl vydán ve verzi 1.5.0.
Byla vydána nová verze 1.12.0 dynamického programovacího jazyka Julia (Wikipedie) určeného zejména pro vědecké výpočty. Přehled novinek v příspěvku na blogu a v poznámkách k vydání. Aktualizována byla také dokumentace.
V Redisu byla nalezena a v upstreamu již opravena kritická zranitelnost CVE-2025-49844 s CVSS 10.0 (RCE, vzdálené spouštění kódu).
Ministr a vicepremiér pro digitalizaci Marian Jurečka dnes oznámil, že přijme rezignaci ředitele Digitální a informační agentury Martina Mesršmída, a to k 23. říjnu 2025. Mesršmíd nabídl svou funkci během minulého víkendu, kdy se DIA potýkala s problémy eDokladů, které některým občanům znepříjemnily využití možnosti prokázat se digitální občankou u volebních komisí při volbách do Poslanecké sněmovny.
Společnost Meta představila OpenZL. Jedná se o open source framework pro kompresi dat s ohledem na jejich formát. Zdrojové kódy jsou k dispozici na GitHubu.
Google postupně zpřístupňuje českým uživatelům Režim AI (AI Mode), tj. nový režim vyhledávání založený na umělé inteligenci. Režim AI nabízí pokročilé uvažování, multimodalitu a možnost prozkoumat jakékoliv téma do hloubky pomocí dodatečných dotazů a užitečných odkazů na weby.
Programovací jazyk Python byl vydán v nové major verzi 3.14.0. Podrobný přehled novinek v aktualizované dokumentaci.
Víte že můžete odebírat mé blogy pomocí RSS? (Co je to RSS?)
Od určité doby jsou všechny texty které zde publikuji verzované na Githubu.
Jestliže najdete chybu, nepište mi do diskuze a rovnou jí opravte. Github má online editor, není to skoro žádná práce a podstatně mi tím usnadníte život. Taky vás čeká věčná sláva v commit logu :)
V minulém díle jsem rozepsal jak vypadají moje bajtkódy. Jak se k nim ale dostat? Přes moje původní obavy se ukázalo, že neoptimalizující kompilátor je v případě, že existuje abstraktní syntaktický strom krásně jednoduchý.
Ke každému prvku AST stromu jsem přidal metodu .compile(code_context)
, která do code_context
objektu zkompiluje sebe sama, tedy vloží do něj patřičné literály a do bajtkódu vloží instrukce pro jejich použití.
Například pro objekt Self to vypadá takto:
def compile(self, context): context.add_bytecode(BYTECODE_PUSH_SELF) return context
Pro objekt představující čísla už je to trochu složitější, neboť je třeba prvně číslo vložit do seznamu literálů:
def compile(self, context): index = context.add_literal_int(self.value) context.add_bytecode(BYTECODE_PUSH_LITERAL) context.add_bytecode(LITERAL_TYPE_INT) context.add_bytecode(index) return context
V bajtkódu je vložená instrukce PUSH_LITERAL
, poté typ literálu a jeho index.
U binární zprávy je krásně vidět, jak se prvně zkompiluje čemu se má zpráva poslat a poté teprve samotná zpráva:
def compile(self, context): context.add_literal_str_push_bytecode(self.name) self.parameter.compile(context) context.add_bytecode(BYTECODE_SEND) context.add_bytecode(SEND_TYPE_BINARY) context.add_bytecode(1) return context
Prvně se resolvne název, poté se zkompiluje obsah parametru a poté se tento obsah pošle objektu na názvu. Poslední řádek context.add_bytecode(1)
určuje počet parametrů, což je u binárních zpráv vždy jeden.
Krásně se to kombinuje s objektem Send
, který specifikuje fakt že se má něco něčemu poslat:
def compile(self, context): self.obj.compile(context) self.msg.compile(context) return context
Prvně zkompiluj objekt kterému bude něco posílat, což muže být třeba Self
, poté samotnou zprávu, což může být třeba výše uvedená BinaryMessage
.
Asi nejzajímavějším a nejsložitějším na zkompilování se ukázal Object
:
def _add_slot_to_bytecode(self, context, name, value): boxed_name = String(name) boxed_name.compile(context) value.compile(context) context.add_bytecode(BYTECODE_ADD_SLOT) def compile(self, context): obj = ObjectRepresentation() obj.meta_set_ast(self) obj.meta_set_parameters(self.params) index = context.add_literal_obj(obj) context.add_bytecode(BYTECODE_PUSH_LITERAL) context.add_bytecode(LITERAL_TYPE_OBJ) context.add_bytecode(index) for name, value in self.slots.iteritems(): self._add_slot_to_bytecode(context, name, value) context.add_bytecode(SLOT_NORMAL) for name, value in self.parents.iteritems(): self._add_slot_to_bytecode(context, name, value) context.add_bytecode(SLOT_PARENT) if self.code: new_context = CodeContext() obj.meta_set_code_context(new_context) for item in self.code: item.compile(new_context) obj.map.code_context = new_context return context
Složitost je do velké míry dána tím, že jsem se rozhodl, že objektové literály budu vkládat mezi literály jako poměrně jednoduché objekty, které nemají nic moc kromě parametrů předvyplněno. Vyplnění probíhá ve chvíli, kdy je objekt vytvořen.
Výše je možné vidět, že je nejdřív vytvořen prázdný objekt, do kterého je uložena jen AST reprezentace pro pozdější referenci a seznam parametrů, které přijímá. Celý zbytek je pak dodán až dynamicky za běhu - všechny sloty, všechny parent sloty a samozřejmě když obsahuje kód, tak je vše rekurzivně provedeno i pro kód.
Když už jsem měl hotový triviální kompilátor, rozhodl jsem se také napsat si k němu jednoduchý disassembler (ehm, disbytecoder), tedy něco co mi čitelněji zobrazí zkompilovaný kód. V podstatě to funguje inverzně ke kompilátoru; postupně bere instrukce a jejich parametry a překládá je na mnemotechnické zkratky instrukcí:
Napsal jsem to celé maximálně triviálně:
def _compute_index(bytecodes_len, bytecodes): return str(bytecodes_len - len(bytecodes)) def disassemble(bytecodes_bytearray): disassembled = [] bytecodes = [ord(c) for c in bytecodes_bytearray] bytecodes_len = len(bytecodes) while bytecodes: index = _compute_index(bytecodes_len, bytecodes) bytecode = bytecodes.pop(0) if bytecode == BYTECODE_SEND: send_type = bytecodes.pop(0) send_type_str = { SEND_TYPE_UNARY: "UNARY", SEND_TYPE_BINARY: "BINARY", SEND_TYPE_KEYWORD: "KEYWORD", SEND_TYPE_UNARY_RESEND: "UNARY_RESEND", SEND_TYPE_KEYWORD_RESEND: "KEYWORD_RESEND", }[send_type] number_of_params = bytecodes.pop(0) disassembled.append([ index, "SEND", "type:" + send_type_str, "params:" + str(number_of_params) ]) continue elif bytecode == BYTECODE_PUSH_SELF: disassembled.append([ index, "PUSH_SELF" ]) continue elif bytecode == BYTECODE_PUSH_LITERAL: literal_type = bytecodes.pop(0) literal_index = bytecodes.pop(0) literal_type_str = { LITERAL_TYPE_NIL: "NIL", LITERAL_TYPE_INT: "INT", LITERAL_TYPE_STR: "STR", LITERAL_TYPE_OBJ: "OBJ", LITERAL_TYPE_FLOAT: "FLOAT", LITERAL_TYPE_BLOCK: "BLOCK", LITERAL_TYPE_ASSIGNMENT: "ASSIGNMENT", }[literal_type] disassembled.append([ index, "PUSH_LITERAL", "type:" + literal_type_str, "index:" + str(literal_index) ]) continue elif bytecode == BYTECODE_RETURN_TOP: disassembled.append([ index, "RETURN_TOP" ]) continue elif bytecode == BYTECODE_RETURN_IMPLICIT: disassembled.append([ index, "RETURN_IMPLICIT" ]) continue elif bytecode == BYTECODE_ADD_SLOT: slot_type = bytecodes.pop(0) slot_type_str = { SLOT_NORMAL: "SLOT_NORMAL", SLOT_PARENT: "SLOT_PARENT", }[slot_type] disassembled.append([ index, "ADD_SLOT", "type:" + slot_type_str, ]) continue return disassembled
Pokud se někomu zdá ten kód trochu divný a říká si proč jsem třeba nepoužil tuple místo listů, nebo proč tam šaším s přetypováváním na stringy, tak odpověď je RPython magie. Výsledek vypadá zabalený v samotné Selfové syntaxi například takto:
(| literals = (| l <- dict clone. | l at: 0 Put: "ObjBox(Object(slots={benchmark: Object(slots={i: IntNumber(0), i:: AssignmentPrimitive()}, code=[Send(obj=Block(code=[Send(obj=Send(obj=Self(), msg=Message(i)), msg=BinaryMessage(name=<, parameter=IntNumber(1000000)))]), msg=KeywordMessage(name=whileTrue:, parameters=[Block(code=[Send(obj=Self(), msg=KeywordMessage(name=i:, parameters=[Send(obj=Send(obj=Self(), msg=Message(i)), msg=BinaryMessage(name=+, parameter=IntNumber(1)))]))])]))]), run_benchmark: Object(slots={start_time: Nil(), start_time:: AssignmentPrimitive(), end_time: Nil(), end_time:: AssignmentPrimitive()}, code=[Send(obj=Send(obj=Send(obj=Self(), msg=Message(primitives)), msg=Message(interpreter)), msg=KeywordMessage( name=runScript:, parameters=['objects/stdlib.tself'])), Send(obj=Self(), msg=KeywordMessage(name=start_time:, parameters=[Send(obj=Send(obj=Send(obj=Self(), msg=Message(primitives)), msg=Message(time)), msg=Message(timestamp))])), Send(obj=Self(), msg=Message(benchmark)), Send(obj=Self(), msg=KeywordMessage(name=end_time: , parameters=[Send(obj=Send(obj=Send(obj=Self(), msg=Message(primitives)), msg=Message(time)), msg=Message(timestamp))])), Send(obj=Send(obj=Send( obj=Send(obj=Send(obj=Self(), msg=Message(end_time)), msg=BinaryMessage( name=-, parameter=Send(obj=Self(), msg=Message(start_time)))), msg=Message(asString)), msg=BinaryMessage(name=+, parameter=' ')), msg=Message(print))])}))"; at: 1 Put: "StrBox(benchmark)"; at: 2 Put: "ObjBox(Object(slots={i: IntNumber(0), i:: AssignmentPrimitive()}, code=[Send(obj=Block(code=[Send(obj=Send(obj=Self(), msg=Message(i)), msg=BinaryMessage(name=<, parameter=IntNumber(1000000)))]), msg=KeywordMessage( name=whileTrue:, parameters=[Block(code=[Send(obj=Self(), msg=KeywordMessage( name=i:, parameters=[Send(obj=Send(obj=Self(), msg=Message(i)), msg=BinaryMessage( name=+, parameter=IntNumber(1)))]))])]))]))"; at: 3 Put: "StrBox(i)"; at: 4 Put: "IntBox(0)"; at: 5 Put: "StrBox(i:)"; at: 6 Put: "StrBox(run_benchmark)"; at: 7 Put: "ObjBox(Object(slots={start_time: Nil(), start_time:: AssignmentPrimitive(), end_time: Nil(), end_time:: AssignmentPrimitive()}, code=[Send(obj=Send(obj=Send(obj=Self(), msg=Message(primitives)), msg=Message( interpreter)), msg=KeywordMessage(name=runScript:, parameters=[ 'objects/stdlib.tself'])), Send(obj=Self(), msg=KeywordMessage( name=start_time:, parameters=[Send(obj=Send(obj=Send(obj=Self(), msg=Message(primitives)), msg=Message(time)), msg=Message(timestamp))])), Send(obj=Self(), msg=Message(benchmark)), Send(obj=Self(), msg=KeywordMessage( name=end_time:, parameters=[Send(obj=Send(obj=Send(obj=Self(), msg=Message( primitives)), msg=Message(time)), msg=Message(timestamp))])), Send(obj=Send( obj=Send(obj=Send(obj=Send(obj=Self(), msg=Message(end_time)), msg=BinaryMessage( name=-, parameter=Send(obj=Self(), msg=Message(start_time)))), msg=Message(asString)), msg=BinaryMessage(name=+, parameter=' ')), msg=Message(print))]))"; at: 8 Put: "StrBox(start_time)"; at: 9 Put: "StrBox(start_time:)"; at: 10 Put: "StrBox(end_time)"; at: 11 Put: "StrBox(end_time:)". ). disassembled = (|| ("0", "PUSH_LITERAL", "type:OBJ", "index:0"), ("3", "PUSH_LITERAL", "type:STR", "index:1"), ("6", "PUSH_LITERAL", "type:OBJ", "index:2"), ("9", "PUSH_LITERAL", "type:STR", "index:3"), ("12", "PUSH_LITERAL", "type:INT", "index:4"), ("15", "ADD_SLOT", "type:SLOT_NORMAL"), ("17", "PUSH_LITERAL", "type:STR", "index:5"), ("20", "PUSH_LITERAL", "type:ASSIGNMENT", "index:0"), ("23", "ADD_SLOT", "type:SLOT_NORMAL"), ("25", "ADD_SLOT", "type:SLOT_NORMAL"), ("27", "PUSH_LITERAL", "type:STR", "index:6"), ("30", "PUSH_LITERAL", "type:OBJ", "index:7"), ("33", "PUSH_LITERAL", "type:STR", "index:8"), ("36", "PUSH_LITERAL", "type:NIL", "index:0"), ("39", "ADD_SLOT", "type:SLOT_NORMAL"), ("41", "PUSH_LITERAL", "type:STR", "index:9"), ("44", "PUSH_LITERAL", "type:ASSIGNMENT", "index:0"), ("47", "ADD_SLOT", "type:SLOT_NORMAL"), ("49", "PUSH_LITERAL", "type:STR", "index:10"), ("52", "PUSH_LITERAL", "type:NIL", "index:0"), ("55", "ADD_SLOT", "type:SLOT_NORMAL"), ("57", "PUSH_LITERAL", "type:STR", "index:11"), ("60", "PUSH_LITERAL", "type:ASSIGNMENT", "index:0"), ("63", "ADD_SLOT", "type:SLOT_NORMAL"), ("65", "ADD_SLOT", "type:SLOT_NORMAL"), ("67", "PUSH_LITERAL", "type:STR", "index:6"), ("70", "SEND", "type:UNARY", "params:0"), ("73", "RETURN_TOP"), ("74", "RETURN_TOP"), ("75", "RETURN_TOP"), ("76", "RETURN_TOP") ). bytecodes = (|| 3, 3, 0, 3, 2, 1, 3, 3, 2, 3, 2, 3, 3, 1, 4, 6, 0, 3, 2, 5, 3, 6, 0, 6, 0, 6, 0, 3, 2, 6, 3, 3, 7, 3, 2, 8, 3, 0, 0, 6, 0, 3, 2, 9, 3, 6, 0, 6, 0, 3, 2, 10, 3, 0, 0, 6, 0, 3, 2, 11, 3, 6, 0, 6, 0, 6, 0, 3, 2, 6, 0, 0, 0, 4, 4, 4, 4 ).
(Kód byl pro větší přehlednost zalomen)
Původně jsem měl výsledek obalen v JSONu, ale nakonec mi kamarád připoměl, že součástí experimentu s tinySelfem je vyzkoušet používat jeho objektové literály, čehož je výsledkem výše uvedený výpis.
Tedy interpreter vypisuje jako debug věci v syntaxi sama sebe. Nutno dodat, že je to celé zatím neotestované, neboť ve chvíli kdy byl tento blog napsán nebyly v tinySelfu podporovány ani pole, ani slovníky a jedná se tedy spíš jen o takový experimentální nástřel. Tomu taky odpovídají ty AST stringy na začátku, které jsou silně nepřehledné, a které to bude chtít časem určitě vylepšit.
Příště se už konečně podíváme jak vlastně uvnitř vypadá interpreter a smyčka vykonávání příkazů.
Tiskni
Sdílej: