Od soboty do úterý probíhá v Hamburku konference 39C3 (Chaos Communication Congress) věnovaná také počítačové bezpečnosti nebo hardwaru. Program (jiná verze) slibuje řadu zajímavých přednášek. Streamy a záznamy budou k dispozici na media.ccc.de.
Byl představen nový Xserver Phoenix, kompletně od nuly vyvíjený v programovacím jazyce Zig. Projekt Phoenix si klade za cíl být moderní alternativou k X.Org serveru.
XLibre Xserver byl 21. prosince vydán ve verzi 25.1.0, 'winter solstice release'. Od založení tohoto forku X.Org serveru se jedná o vůbec první novou minor verzi (inkrementovalo se to druhé číslo v číselném kódu verze).
Wayback byl vydán ve verzi 0.3. Wayback je "tak akorát Waylandu, aby fungoval Xwayland". Jedná se o kompatibilní vrstvu umožňující běh plnohodnotných X11 desktopových prostředí s využitím komponent z Waylandu. Cílem je nakonec nahradit klasický server X.Org, a tím snížit zátěž údržby aplikací X11.
Byla vydána verze 4.0.0 programovacího jazyka Ruby (Wikipedie). S Ruby Box a ZJIT. Ruby lze vyzkoušet na webové stránce TryRuby. U příležitosti 30. narozenin, první veřejná verze Ruby 0.95 byla oznámena 21. prosince 1995, proběhl redesign webových stránek.
Všem čtenářkám a čtenářům AbcLinuxu krásné Vánoce.
Byla vydána nová verze 7.0 linuxové distribuce Parrot OS (Wikipedie). S kódovým názvem Echo. Jedná se o linuxovou distribuci založenou na Debianu a zaměřenou na penetrační testování, digitální forenzní analýzu, reverzní inženýrství, hacking, anonymitu nebo kryptografii. Přehled novinek v příspěvku na blogu.
Vývojáři postmarketOS vydali verzi 25.12 tohoto před osmi lety představeného operačního systému pro chytré telefony vycházejícího z optimalizovaného a nakonfigurovaného Alpine Linuxu s vlastními balíčky. Přehled novinek v příspěvku na blogu. Na výběr jsou 4 uživatelská rozhraní: GNOME Shell on Mobile, KDE Plasma Mobile, Phosh a Sxmo.
Byla vydána nová verze 0.41.0 multimediálního přehrávače mpv (Wikipedie) vycházejícího z přehrávačů MPlayer a mplayer2. Přehled novinek, změn a oprav na GitHubu. Požadován je FFmpeg 6.1 nebo novější a také libplacebo 6.338.2 nebo novější.
Byla vydána nová verze 5.5 (novinky) skriptovacího jazyka Lua (Wikipedie). Po pěti a půl letech od vydání verze 5.4.
Tiskni
Sdílej:
Python 2.4.1 (#1, Sep 13 2005, 00:39:20) [GCC 4.0.2 20050901 (prerelease) (SUSE Linux)] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> for a in xrange(20): ... for b in xrange(20): ... for c in xrange(20): ... if(a+b+c == 21 and a*a+b*b+c*c == 189): ... print a, b, c ... 2 8 11 2 11 8 3 6 12 3 12 6 6 3 12 6 12 3 8 2 11 8 11 2 11 2 8 11 8 2 12 3 6 12 6 3 >>>
c = 21 - a - b' a otestovat druhou rovnici. A omezení číslem 20 je zbytečně nadstřelené, protože z druhé rovnice okamžitě vyplývá, že čtverce těch čísel jsou nejvýše 189, takže to stačí do 13. I při řešení hrubou silou je vhodné se nejdřív zamyslet nad postupem…
i += n;jako
for (j = 0; j < n; j++)
i++;
patří ulámat pracky a nic na tom nemění skutečnost, že to program nemusí výrazně zpomalit, protože se to např. nespouští často.
Optimalizovat a používat u psaní programů mozek jsou dvě ne zcela totožné věci. Člověk, který při psaní programů nepoužívá mozek, nepíše dobré programy, i kdyby spával s kompletním The Art of Computer Programming pod hlavou.
pre kazdu prasacinu sa najde aplikacia, kde je nasadenie vhodne. suhlasim s tym, ze pouzit tri cykly na riesenie rovnice o troch neznamych je blbost presahujuca blbost priemerneho usera.
k q^0, k q^1, k q^2, .... Dohromady to dá tohle:
k (1 + q + q^2) = 21 k^2 (1 + q^2 + q^4) = 189Pěkná soustava rovnic, že? Pro
q vyjde:
4 q^4 - 6 q^3 - 2 q^2 - 6 q + 4 = 0Vyjde mj.
q = 2. Z toho vyjde k = 3 a očekávané výsledky 3, 6, 12. Také vyjde q = 1/2, z čehož máme k = 12. Je vidět, že to dá rovněž 3, 6, 12. Zbylé dva kořeny jsou komplexní, takže by nedaly tak pěkné řešení.
k (1 + q + q^2) = A k^2 (1 + q^2 + q^4) = Bdostaneš eliminací k
(B-A^2)q^4 + 2Bq^3 + (3B-A^2)q^2 + 2Bq + (B-A^2) = 0což je symetrická polynomiální rovnice sudého řádu, takže ji uděláš substituci z=q+1/q, dostaneš
(B-A^2)z^2 + 2Bz + B+A^2 = 0která je kvadratická a řešíš ji normálně. Vyjde jednak z=-1, to ovšem dává 1+1/q=-1 neboli 1+q+q^2=0, a tedy neodpovídá žádnému řešení původní rovnice. Kromě toho vyjde
z = (A^2 + B)/(A^2 - B)což dá dvě řešení q: 2 a 1/2 (tady už jsem dosadil čísla, protože se mi nechce psát odmocniny). Z definice z jsou ty dva kořeny převrácené hodnoty a jeden je redundantní, takže vezmeš např. q=2 a dopočítáš zbytek.
Ehm, myslím, že jsem napsal, že se jedná o geometrickou posloupnost, pokud je ovšem nepochopitelné, že a1, a2 a a3 jsou první členy této posloupnosti, pak se omlouvám. Příště to napíši srozumitelněji.
Ale koukám, že se to chytlo, příště vymyslím něco zapeklitějšího;) Konečně bychom místo flameování mohli všichni počítat a psát algoritmy;)
Nebo též můžeme rozložit
1+q^2+q^4 = (1+q+q^2)(1-q+q^2)
a dosadit z první rovnice za a1^2 do druhé rovnice. Po jednoduché úpravě dostaneme již výše zmíněnou kvadratickou rovnici
2q^2-5q+2 = 0.
P.S. Já jen zapsal, autor Helena Ř. :)