Homebrew (Wikipedie), správce balíčků pro macOS a od verze 2.0.0 také pro Linux, byl vydán ve verzi 4.5.0. Na stránce Homebrew Formulae lze procházet seznamem balíčků. K dispozici jsou také různé statistiky.
Byl vydán Mozilla Firefox 138.0. Přehled novinek v poznámkách k vydání a poznámkách k vydání pro vývojáře. Řešeny jsou rovněž bezpečnostní chyby. Nový Firefox 138 je již k dispozici také na Flathubu a Snapcraftu.
Šestnáctý ročník ne-konference jOpenSpace se koná 3. – 5. října 2025 v Hotelu Antoň v Telči. Pro účast je potřeba vyplnit registrační formulář. Ne-konference neznamená, že se organizátorům nechce připravovat program, ale naopak dává prostor všem pozvaným, aby si program sami složili z toho nejzajímavějšího, čím se v poslední době zabývají nebo co je oslovilo. Obsah, který vytvářejí všichni účastníci, se skládá z desetiminutových
… více »Richard Stallman přednáší ve středu 7. května od 16:30 na Technické univerzitě v Liberci o vlivu technologií na svobodu. Přednáška je určená jak odborné tak laické veřejnosti.
Jean-Baptiste Mardelle se v příspěvku na blogu rozepsal o novinkám v nejnovější verzi 25.04.0 editoru videa Kdenlive (Wikipedie). Ke stažení také na Flathubu.
TmuxAI (GitHub) je AI asistent pro práci v terminálu. Vyžaduje účet na OpenRouter.
Byla vydána nová verze R14.1.4 desktopového prostředí Trinity Desktop Environment (TDE, fork KDE 3.5, Wikipedie). Přehled novinek i s náhledy v poznámkách k vydání. Podrobný přehled v Changelogu.
Bylo vydáno OpenBSD 7.7. Opět bez písničky.
V Tiraně proběhl letošní Linux App Summit (LAS) (Mastodon). Zatím nesestříhané videozáznamy přednášek jsou k dispozici na YouTube.
nedavno jsem resil, ze bysme si mohli poridit prekladac od intelu a jelikoz se pravidelne opakuje, ze gcc je mizerne optimalizuji prekladac, a ze intel je s vyvojem nekde uplne jinde. (prece jen ma tu vyhodu, ze vi naprosto presne, jak ti mravenci v tech procesorech opravdu pobihaji)
a kdyz jsem zjistil, ze icc by mel podporovat automatickou paralelizaci vypoctu, zacalo to pro me byt jeste lakavejsi sousto. udelal jsem si proto par testu na svych ,,obsesivnich'' prikladech s fibonaccihy cisly.
kod jsem pouzil nasledujici (je napsany schvalne tak divne, ale o tom pozdeji, jestli vas to bude zajimat)int fib0(int i) { if (i <= 2) return 1; return fib0(i - 1) + fib0(i - 2); } int fib(int i) { int result; result = fib0(i); return result; } int main() { int i, j; int blah[10]; for (i = 0; i < 10; i++) blah[i] = fib(32 + i); for (i = 0, j = 0; i < 10; i++) j += blah[i]; printf("%i\n", j); return 0; }jelikoz s icc (10.1.008) nemam moc velke zkusenosti, pouzil jsem jenom "-O3 -ipo -parallel" stejne u gcc (4.1.2) pak jenom "-O3", pokud mate nekdo dalsi napady a zkusenosti podelte se s nimi v diskuzi. test jsem delal na svem notebooku s core duo, aby si to prekladac vychutnal ;-]. tak a vysledky:
icc -O3 fib.c | 14.787s |
icc -O3 -ipo fib.c | 14.640s |
icc -O3 -ipo parallel fib.c | 8.935s |
gcc -O3 fib.c | 6.646s |
int fib(int i) { int result; printf("start: %i\n", i); result = fib0(i); printf("end: %i\n", i); return result; }
icc -O3 -ipo fib.c | 14.522s |
icc -O3 -ipo -parallel fib.c | 14.209s |
takze vysledky pro me nejsou moc oslnujici, asi by bylo dobre udelat test i na nejakych "real life" prikladech... ale to uz nechavam na ctenych ctenarich...
Tiskni
Sdílej:
gcc -O3: 5.62s icc -O3: 6.07s java: 5.34sParalelizacia icc u mna bola viacmenej bez vysledkov na vykon (vramci statistickej chyby...)
icc -O3 -parallel -axT -xO : 5.99s icc -O3 -parallel -openmp -axT -xO : 6.03s
gcc -O3: 3.18s icc -O3: 6.68s java: 5.34s
icc -O3 -ipo fib.c 14.640s icc -O3 -ipo -parallel fib.c 8.935sje zrychleni o cca 40%, coz je na dvoujadrovem procesoru na hranici praktickych moznosti (kvuli rezii hardwaru i softwaru). a proto pisi: ,,ta paralelizace ma docela hezke vysledky'' v dalsim testu jsem se ji pokusil rozhodit side-effecty, aby se ukazalo, jak to zvladne... a s tim uz si nedokazal poradit, ale to neni rezie -- jinak by to nefungovalo ani v prvnim pripade... navic je zrejme, ze icc zvlada jen paralelizaci smycek a ne volani.
int fib1(int x, int i) { if (i <= 2) return x+1; return fib1(fib1(x, i - 2), i - 1); }tak jsem dostal +- stejný výkon od gcc i icc (= stejný jako gcc a původní program). MMCH, kdo dokáže říct co ten asm pro původní program skompilovaný gcc dělá, je fakt dobrej.
muj paralelizujici interpreter schemu se s tim vyrovnal bez vetsich ztratSmím se zeptat jak? Spoolujete ty side-effecty a třídíte podle času, kdy měly nastat? Nebo je jen vykonáte v nějakém pořadí a tím změníte sémantiku programu? Co děláte, když např. čtete hodnotu, která teprve bude zapsána?
nbench 2.2.2, kod v C, testuje razeni ciselne a retezcove, operace nad bitovymi poli, FFT, huffman, sifru idea, neutonovou sit...
gcc -march=nocona -O3
MEMORY INDEX : 27.356 INTEGER INDEX : 25.623 FLOATING-POINT INDEX: 42.247
icc -O3 -axT -xT
MEMORY INDEX : 22.976 INTEGER INDEX : 32.503 FLOATING-POINT INDEX: 78.696
icc -O3 -axT -xT -parallel
MEMORY INDEX : 23.318 INTEGER INDEX : 32.532 FLOATING-POINT INDEX: 78.393
-ipo vykon vyrazne snizilo...
Prevaha icc v necelociselnych vypoctech je brutalni.
Je pravda, ze spousta veci by se dala vylepsit a nektere techniky v gcc uplne chybi. Take je pravda, ze pro cloveka, ktery problematice rozumi, jsou nedostatky opravdu hodne protivne. Ale vyraz "mizerne optimalizujici" u gcc rozhodne neni na miste.
Pokud jde o zapisek konkretne, tak nevypovida vubec o nicem.