Byla vydána verze 1.93.0 programovacího jazyka Rust (Wikipedie). Podrobnosti v poznámkách k vydání. Vyzkoušet Rust lze například na stránce Rust by Example.
Svobodný operační systém ReactOS (Wikipedie), jehož cílem je kompletní binární kompatibilita s aplikacemi a ovladači pro Windows, slaví 30. narozeniny.
Společnost Raspberry Pi má nově v nabídce flash disky Raspberry Pi Flash Drive: 128 GB za 30 dolarů a 256 GB za 55 dolarů.
Technologie Skip pro multiplatformní mobilní vývoj, která umožňuje vývojářům vytvářet iOS a Android aplikace z jediné Swift a SwiftUI kódové základny, se s vydáním verze 1.7 stala open source.
Na GitHubu byl zveřejněn algoritmus "Pro vás" sociální sítě 𝕏.
Byla vydána nová major verze 34.0.0 webového prohlížeče Pale Moon (Wikipedie) vycházejícího z Firefoxu. Přehled novinek v poznámkách k vydání.
Win8DE je desktopové prostředí pro Wayland, inspirované nechvalně proslulým uživatelským rozhraním Metro z Windows 8. Nabízí dlaždicové rozhraní s velkými tlačítky a jednoduchou navigací, optimalizované pro dotyková zařízení. Cílem projektu je přetvořit design operačního systému Windows 8 do funkčního a minimalistického rozhraní vhodného pro každodenní použití na Linuxu.
Laboratoře CZ.NIC vydaly Datovku 4.28.0 a Mobilní Datovku 2.6.0. Hlavní novinkou je ukládání rozpracovaných datových zpráv do konceptů. Datovka je svobodné multiplatformní aplikace pro přístup k datovým schránkám a k trvalému uchovávání datových zpráv v lokální databázi.
Unix Pipe Game je vzdělávací karetní hra zaměřená na děti a rodiče, která děti učí používat unixové příkazy prostřednictvím interaktivních úkolů. Klíčovým prvkem hry je využití symbolu | pro pipeline neboli 'rouru', který umožňuje propojit výstupy a vstupy jednotlivých unixových příkazů, v tomto případě vytištěných na kartičkách. Předpokládá se, že rodič má alespoň nějaké povědomí o unixových příkazech a jejich provazování pomocí |.
… více »PCIem je linuxový framework, který vytváří virtuální zařízení PCIe pomocí technik, které umožňují hostitelskému operačnímu systému rozpoznat tyto syntetické 'neexistující' karty jako fyzické zařízení přítomné na sběrnici. Framework PCIem je primárně zamýšlen jako pomůcka pro vývoj a testování ovladačů bez nutnosti použít skutečný hardware. Dle tvrzení projektu si fungování PCIem můžeme představit jako MITM (Man-in-the-Middle), který se nachází mezi ovladači a kernelem.
Programming stuff. And stuff.
Nemožnost attachnout se k pythonímu procesu podobně jak to umí gdb s C/C++ kódem mi dost začla vadit, když jsem měl spoustu pythoních procesů a jenom občas v některém z nich nastala race condition.
Dostal jsem nápad vyzkoušet injectnout pythoní kód, který by se připojil k pythonímu debuggeru, do běžícího pythoního procesu. Možnosti jsou asi dvě, gdb nebo ptrace. Volba padla na gdb, pro vyzkoušení je to jednodušší než přímo přes ptrace (navíc přenositelnější a není potřeba přepisovat kód v paměti).
Nejdůležitejší věc byla zjistit, kam se může kód injectnout. Když je proces uspán v systémovém volání (třeba přes time.sleep), tak to moc dobře nejde. Něco jsem zjistil experimentováním s gdb nad pythonem a něco z gdbinit, který používají pythoní vývojáři.
Po attachnutí se s gdb na pythoní proces se musí breaknout na místě v pythoním stack frame (funkce PyEval_EvalFrameEx), kde se bude provádět další instrukce virtuálního stroje. V pythonu 2.6.2 se switch na opcode nachází v Python/ceval.c:952.
V promptu gdb zadám dva příkazy (viz níže definice těch příkazů):
til Python/ceval.c:952
callkomodo
Vuala! V Komodo IDE se mi objeví connection (stačí jen dát jednou "step over") a už vidím a debuguju kód, který je interpretován attachnutým pythoním procesem. S jiným debuggerem by to nespíš šlo taky, jenže myslím většina pythoních debuggerů dělá connection obráceně (debugovaný program je server, debugger je klient), asi by se muselo hackovat jinak.
GDB má machine interface, čímž lze tenhle postup automatizovat.
Použité předdefinované příkazy v ~/.gdbinit (metoda brk se připojuje na debugger):
define callkomodo
call PyRun_SimpleString("import sys; sys.path.append('/opt/Komodo'); from dbgp.client import brk; brk('172.16.1.105', 9000);")
continue
end
define til
tbreak $arg0
continue
end
U sebe jsem měl přeložen python s ladícími symboly, breaknutí na konkrétním řádku není problém. Na ostrém serveru je nutné disassemblovat distribuční python a zjistit správnou adresu pro breakpoint (nebo přeložit ručně znovu). V mém pythonu ten switch(opcode) vypadá takhle:
0x00000000004a0d83 (PyEval_EvalFrameEx+1367): cmpl $0x8f,-0x1c8(%rbp)
0x00000000004a0d8d (PyEval_EvalFrameEx+1377): ja 0x4a7026 (PyEval_EvalFrameEx+26618)
0x00000000004a0d93 (PyEval_EvalFrameEx+1383): mov -0x1c8(%rbp),%eax
0x00000000004a0d99 (PyEval_EvalFrameEx+1389): mov 0x546270(,%rax,8),%rax
0x00000000004a0da1 (PyEval_EvalFrameEx+1397): jmpq *%rax
Tiskni
Sdílej:
pekne, precteni takoveho blogu po ranu cloveku hned spravi naladu 
Pro jiné pythoní debuggery by mělo stačit injectnout volání sys.settrace() se správně nastavenou trace funkcí a výsledek by měl být podobnej.
Trocha jsem to zkoušel na pythoní binárce bez ladících symbolů - musíte specifikovat adresu. Jenže třeba s ASLR + PIC kódem se adresy pořád mění. Nakonec jsem boj s gdb vyhrál
Lze to napsat takhle (samozřejmě je nutné znát správný offset):
til *(&PyEval_EvalFrameEx+998)