Byla vydána verze 1.91.0 programovacího jazyka Rust (Wikipedie). Podrobnosti v poznámkách k vydání. Vyzkoušet Rust lze například na stránce Rust by Example.
Ministerstvo průmyslu a obchodu vyhlásilo druhou veřejnou soutěž v programu TWIST, který podporuje výzkum, vývoj a využití umělé inteligence v podnikání. Firmy mohou získat až 30 milionů korun na jeden projekt zaměřený na nové produkty či inovaci podnikových procesů. Návrhy projektů lze podávat od 31. října do 17. prosince 2025. Celková alokace výzvy činí 800 milionů korun.
Google v srpnu oznámil, že na „certifikovaných“ zařízeních s Androidem omezí instalaci aplikací (včetně „sideloadingu“) tak, že bude vyžadovat, aby aplikace byly podepsány centrálně registrovanými vývojáři s ověřenou identitou. Iniciativa Keep Android Open se to snaží zvrátit. Podepsat lze otevřený dopis adresovaný Googlu nebo petici na Change.org.
Byla vydána nová verze 18 integrovaného vývojového prostředí (IDE) Qt Creator. S podporou Development Containers. Podrobný přehled novinek v changelogu.
Cursor (Wikipedie) od společnosti Anysphere byl vydán ve verzi 2.0. Jedná se o multiplatformní proprietární editor kódů s podporou AI (vibe coding).
Google Chrome 142 byl prohlášen za stabilní. Nejnovější stabilní verze 142.0.7444.59 přináší řadu novinek z hlediska uživatelů i vývojářů. Podrobný přehled v poznámkách k vydání. Opraveno bylo 20 bezpečnostních chyb. Za nejvážnější z nich bylo vyplaceno 50 000 dolarů. Vylepšeny byly také nástroje pro vývojáře.
Pro moddery Minecraftu: Java edice Minecraftu bude bez obfuskace.
Národní identitní autorita, tedy NIA ID, MeG a eOP jsou nedostupné. Na nápravě se pracuje [𝕏].
Americký výrobce čipů Nvidia se stal první firmou na světě, jejíž tržní hodnota dosáhla pěti bilionů USD (104,5 bilionu Kč). Nvidia stojí v čele světového trhu s čipy pro umělou inteligenci (AI) a výrazně těží z prudkého růstu zájmu o tuto technologii. Nvidia již byla první firmou, která překonala hranici čtyř bilionů USD, a to letos v červenci.
Po Canonicalu a SUSE oznámil také Red Hat, že bude podporovat a distribuovat toolkit NVIDIA CUDA (Wikipedie).
1. Výstup na obrazovku
   1.1 Příkaz puts
   1.2 Příkaz print
   1.3 Příkaz printf
2. Vstup z klávesnice
   2.1 Příkaz gets (readline)
   2.2 Metoda chomp
   2.3 Metoda to_i
   2.4 Metoda to_f
Jak už je v Ruby zvykem, máme pro tyto účely
hned několik možností, a to v podobě příkazů puts,
print a printf. Pojďme se na ně podívat
blíže.
putsNejzákladnějším a taky asi nejobvyklejším příkazem k vypsání textu na
obrazovku je puts, a pokud jste byli pozorní, několikrát jsem
jej už použil v minulých dílech (3, 2, 1):
irb(main):001:0> puts "Ahoj, svete!" Ahoj, svete! => nil irb(main):002:0>
Jak vidíte, příkaz vypíše to, co je mu zadáno jako parametr, a odřádkuje. Jelikož se ve skutečnosti jedná o metodu (o metodách si budeme povídat zanedlouho a také zjistíme, že v Ruby jsou vlastně všechny příkazy metodami), lze jej zapsat i pro metody obvyklejším způsobem, tedy se závorkami:
irb(main):002:0> puts("Ahoj, svete!")
Ahoj, svete!
=> nil
irb(main):003:0>
Tento způsob zápisu se však v Ruby příliš nepoužívá.
Vypisovat lze hodnoty všech základních datových typů, kromě Hashe:
irb(main):003:0> puts "Ahoj" # String Ahoj => nil irb(main):004:0> puts 256 # Fixnum 256 => nil irb(main):005:0> puts 1_079_252_848 # Bignum 1079252848 => nil irb(main):006:0> puts -7.25 # Float -7.25 => nil irb(main):007:0> puts ['Prvni', 'Druhy', 'Treti'] Prvni Druhy Treti => nil irb(main):008:0>
Pochopitelně lze vypisovat i výrazy a proměnné:
irb(main):008:0> PI = 3.14 => 3.14 irb(main):009:0> puts PI 3.14 => nil irb(main):010:0> puts PI * 4**2 50.24 => nil irb(main):011:0> puts "Raz" + " a dva" Raz a dva => nil irb(main):012:0>
...a kupodivu i proměnnou typu Hash:
irb(main):012:0> udaje = {
irb(main):013:1*   "jmeno" => "Frantisek",
irb(main):014:1*   "prijmeni" => "Voprsalek"
irb(main):015:1> }
=> {"jmeno"=>"Frantisek", "prijmeni"=>"Voprsalek"}
irb(main):016:0> puts udaje
jmenoFrantisekprijmeniVoprsalek
=> nil
irb(main):017:0>
...jejíž výstup ovšem není příliš použitelný a jak vidno, chtělo by jej učesat.
Údajů můžeme k vypsání předat i více. Jako oddělovač poslouží čárka a každý se vypíše na nový řádek:
irb(main):017:0> puts "Prvni", "Druhy", "Treti" Prvni Druhy Treti => nil irb(main):018:0>
Vůbec nejobvyklejší (a taky nejpoužitelnější) je však kombinace výše uvedených možností:
irb(main):018:0> puts "Knock, knock, " + jmeno + "."*3 Knock, knock, Neo... => nil irb(main):019:0>
printPříkaz print je svým použitím puts velmi
podobný a ve skutečnosti se odlišuje jen tím, že po vypsání požadovaných
údajů nepřejde sám od sebe na nový řádek:
irb(main):019:0> print "Kampak se nam zatoulal konec radku?" Kampak se nam zatoulal konec radku?=> nil irb(main):020:0>
Toto chování je neocenitelné v případě, že máme v plánu k textu později něco dopsat, ať už v cyklu, nebo na základě větvení programu (k tomu se také dostaneme). Odlišné je také chování při vypsání více údajů:
irb(main):020:0> print "Prvni", "Druhy", "Treti" PrvniDruhyTreti=> nil irb(main):021:0>
Na tomto místě by možná nebylo špatné ukázat si základní možnosti formátování textu, a to pomocí takzvaných escape sekvencí (tj. speciálních řídících znaků). Ty nám umožňují třeba vložit konec řádku ve kterékoli části řetězce, nebo použít tabulátor. Následující tabulka shrnuje ty nejběžnější:
| sekvence: | význam: | 
|---|---|
| \\ | zpětné lomítko \ | 
| \' | apostrof ' | 
| \" | uvozovky " | 
| \b | návrat o jeden znak | 
| \n | přesun na další řádek | 
| \r | přesun na začátek současného řádku | 
| \t | tabulátor | 
Použití některých z nich pak ilustruje následující příklad:
irb(main):021:0> print "Jmeno:\t\t", udaje["jmeno"], "\nprijmeni:\t", udaje["prijmeni"], "\n" Jmeno: Frantisek prijmeni: Voprsalek => nil irb(main):022:0>
Jak vidíte, s vhodným použitím escape sekvencí můžeme dosáhnout mnohem přehlednějších a hezčích výstupů.
printfEscape sekvence jsou šikovná věc, nicméně můžeme se dostat do situace,
kdy zjistíme, že nám prostě nestačí - třeba v případě, že budeme chtít
zobrazovat údaje s přesností na určitý počet desetinných míst nebo je
zarovnat na určitou stranu. Právě k těmto účelům je nám k dispozici
příkaz printf, který možnosti formátování značně rozšiřuje.
Použití je obdobné jako v jazyku C nebo Perl:
irb(main):022:0> printf "PI = %0.3f\n", 3.14159 PI = 3.142 => nil irb(main):023:0>
Co jsem to právě udělal? Prvním parametrem je řetězec obsahující
zástupné symboly, na jejichž místo jsou pak dosazovány hodnoty v dalších
parametrech. %0.3f je zmíněná zástupná značka a udává,
v jakém formátu bude na její místo hodnota dosazena. Pojďme si ji nyní
rozebrat znak po znaku:
% – označuje začátek zástupné značky0 – označuje šířku vypisovaného údaje v počtu
      znaků; toto je vhodné např. při zarovnání do sloupců (viz dále),
      přesahuje-li skutečná šířka tuto hodnotu, je údaj vypsán
      kompletní.0 – označuje počet zobrazených desetinných míst;
      jak je vidět z příkladu, dochází zde dokonce k zaokrouhlováníf – označuje typ konverze, v tomto případě reálné
      čísloNejpoužívanější druhy konverze shrnuje následující tabulka:
| znak: | význam: | 
| b | převod do binární soustavy | 
| c | zadaná hodnota je převedena na příslušný znak dle tabulky ASCII | 
| d | celé číslo | 
| e | desetinné číslo v exponenciálním tvaru | 
| E | shodné s e, jen exponent je označován velkým
        znakemE | 
| f | reálné číslo | 
| o | převod do osmičkové soustavy | 
| s | řetězec | 
| x | převod do šestnáctkové soustavy | 
| X | shodné s x, jen velkými písmeny | 
Pojďmě si některé z nich ukázat:
irb(main):023:0> printf "%b", 42 101010=> nil irb(main):024:0> printf "#97 => '%c'", 97 #97 => 'a'=> nil irb(main):025:0> printf "%0.3e", 1_079_252_848 1.079e+09=> nil irb(main):026:0> r=255;g=128;b=64 => 64 irb(main):027:0> printf "rgb(%d,%d,%d) --> #%x%x%x", r, g, b, r, g, b rgb(255,128,64) --> #ff8040=> nil irb(main):028:0> printf "Hello, %s. How are you?", ENV["USER"] Hello, blackened. How are you?=> nil irb(main):029:0> irb(main):016:0> printf "%7.2f\n%7.2f\n%7.2f\n", 3.14, 9.8, 20.645 3.14 9.80 20.64 => nil irb(main):030:0>
Další často používanou vlastností je nechat vyplnit mezery zleva nulami:
irb(main):030:0> printf "%07.2f\n%07.2f\n%07.2f\n", 3.14, 9.8, 20.645 0003.14 0009.80 0020.64 => nil irb(main):031:0>
Možností formátování je pochopitelně mnohem víc, popisovat je všechny však přesahuje záběr tohoto seriálu. Neměl by však být problém si je dohledat v dokumentaci, velice dobře je tato problematika vysvětlena také v prvním dílu Učebnice jazyka C autora Pavla Herouta.
gets (readline)Může se stát, že ve svém programu budete potřebovat za běhu přijmout
údaje od uživatele. K tomuto účelu lze využít příkazu gets
(eventuálně readline – jejich chování je totožné),
který ze standardního vstupu přečte řetězec znaků, ukončený znakem konce
řádku (tedy vše až do stisku klávesy Enter):
irb(main):031:0> jmeno = gets
Jaromir
=> "Jaromir\n"
irb(main):032:0> puts "Good evening, #{jmeno}."
Good evening, Jaromir
.
=> nil
irb(main):033:0>
Takto získaný vstup má však několik nedostatků – řetězec je uložen včetně znaku nového řádku (všimněte si tečky v příkladu), druhý nedostatek pak spočívá v tom, že uložená hodnota je vždy typu String bez ohledu na to, zadáme-li třeba číslo.
chompPrvní nedostatek elegantně řeší metoda chomp, která
z řetězce odstraní poslední znak, jedná-li se o znak konce řádku
(v unixových systémech je to '\n', v Microsoft Windows pak
'\r\n'):
irb(main):033:0> jmeno => "Jaromir\n" irb(main):034:0> jmeno.chomp => "Jaromir" irb(main):035:0> "Jaromir\r\n".chomp => "Jaromir" irb(main):036:0>
Jak vidíme, v případě kombinace znaků '\r\n' dojde
k odstranění obou. Tak je zaručena přenositelnot našeho programu na jinou
platformu bez nutnosti dodatečných úprav zdrojového kódu. Tyto znaky však
musí být přesně v tomto pořadí; při jejich prohození dojde k odstranění
pouze posledního z nich:
irb(main):036:0> "Jaromir\n\r".chomp => "Jaromir\n" irb(main):037:0>
Metodu chomp lze pochopitelně aplikovat přímo při čtení
ze vstupu:
irb(main):036:0> jmeno = gets.chomp Jaromir => "Jaromir" irb(main):037:0>
Jen pro úplnost, existuje také příslušná alternativa s vykřičníkem,
tedy chomp!
to_iŘíkal jsem, že příkazy gets a readline
přijímají hodnotu typu String. Ale co když potřebujeme pracovat
s číselnými hodnotami?
K převodu proměnné typu String na celočíselný typ (Fixnum, Bignum)
slouží metoda to_i:
irb(main):037:0> "18".to_i => 18 irb(main):038:0> "18:40".to_i => 18 irb(main):039:0> "18 hodin 40 minut".to_i => 18 irb(main):040:0> "Je prave 18 hodin.".to_i => 0 irb(main):041:0> "-13.27".to_i => -13 irb(main):042:0>
Tato metoda hledá na začátku řetězce celočíselnou hodnotu. Pokud ji najde, vrátí příslušné číslo, přičemž jakékoli další znaky ignoruje. Nenajde-li ji, vrátí hodnotu 0. Čtení celočíselné hodnoty pak může vypadat třeba takto:
irb(main):042:0> n = gets.to_i 4 => 4 irb(main):043:0> puts 2**n 16 => nil irb(main):044:0>
to_fStejně jako to_i pro celá, slouží metoda to_f
k převodu řetězce na reálné číslo:
irb(main):044:0> "3.14159".to_f => 3.14159 irb(main):045:0> "2e-3".to_f => 0.002 irb(main):046:0> "37.6°C".to_f => 37.6 irb(main):047:0> "PI=3.14".to_f => 0.0 irb(main):048:0>
Čtení reálného čísla pak může vypadat třeba takto:
irb(main):048:0> polomer = gets.to_f 12.7 => 12.7 irb(main):049:0> printf "prumer = %0.2f\n", polomer * 2 prumer = 25.40 => nil irb(main):050:0>
V příštím díle se podíváme na řídící struktury v Ruby.
Nástroje: Tisk bez diskuse
        Tiskni
            
                Sdílej:
                 
                 
                 
                 
                 
                 
            
    
 
irb(main):011:0> b = { :a => "prvni", :b => "druhy" }
=> {:b=>"druhy", :a=>"prvni"}
irb(main):012:0> p b
{:b=>"druhy", :a=>"prvni"}
=> nil
            
irb(main):001:0> require 'yaml'
=> true
irb(main):002:0> b = { 'a' => "prvni", 'b' => { 'b1' => 'vnoreny1', 'b2'=>'vnoreny2' } }
=> {"a"=>"prvni", "b"=>{"b1"=>"vnoreny1", "b2"=>"vnoreny2"}}
irb(main):003:0> str = b.to_yaml
=> "a: prvni\nb: \n  b1: vnoreny1\n  b2: vnoreny2\n"
irb(main):004:0> puts str
a: prvni
b:
  b1: vnoreny1
  b2: vnoreny2
=> nil
Metoda "y" se chová obdobně jako "p":
irb(main):005:0> y b a: prvni b: b1: vnoreny1 b2: vnoreny2 => nilDeserializace se provede takto:
irb(main):006:0> b2 = YAML::load( str )
=> {"a"=>"prvni", "b"=>{"b1"=>"vnoreny1", "b2"=>"vnoreny2"}}