OpenClaw je open-source AI asistent pro vykonávaní různých úkolů, ovládaný uživatelem prostřednictvím běžných chatovacích aplikací jako jsou například WhatsApp, Telegram nebo Discord. Asistent podporuje jak různé cloudové modely, tak i lokální, nicméně doporučován je pouze proprietární model Claude Opus 4.5 od firmy Anthropic v placené variantě. GitHubová stránka projektu OpenClaw.
Projekt VideoLAN a multimediální přehrávač VLC (Wikipedie) dnes slaví 25 let. Vlastní, tenkrát ještě studentský projekt, začal již v roce 1996 na vysoké škole École Centrale Paris. V první únorový den roku 2001 ale škola oficiálně povolila přelicencování zdrojových kódů na GPL a tím pádem umožnila používání VLC mimo akademickou půdu.
Moltbook je sociální síť podobná Redditu, ovšem pouze pro agenty umělé inteligence - lidé se mohou účastnit pouze jako pozorovatelé. Agenti tam například rozebírají podivné chování lidí, hledají chyby své vlastní sociální sítě, případně spolu filozofují o existenciálních otázkách 🤖.
scx_horoscope je „vědecky pochybný, kosmicky vtipný“ plně funkční plánovač CPU založený na sched_ext. Počítá s polohami Slunce a planet, fázemi měsíce a znameními zvěrokruhu. Upozornil na něj PC Gamer.
O víkendu probíhá v Bruselu konference FOSDEM 2026 (Free and Open source Software Developers’ European Meeting). Program konference je velice nabitý: 37 místností, 71 tracků, 1184 přednášejících, 1069 přednášek, prezentací a workshopů. Sledovat je lze i online. K dispozici budou jejich videozáznamy. Aktuální dění lze sledovat na sociálních sítích.
Společnost Nex Computer stojící za "notebooky bez procesorů a pamětí" NexDock představila telefon NexPhone, který může funguje jako desktop PC, stačí k němu připojit monitor, klávesnici a myš nebo NexDock. Telefon by měl být k dispozici ve třetím čtvrtletí letošního roku. Jeho cena by měla být 549 dolarů. Předobjednat jej lze s vratní zálohou 199 dolarů. V dual-bootu by měl být předinstalovaný Android s Linuxem (Debian) jako aplikací a Windows 11.
Byla vydána nová major verze 9.0 softwaru pro správu elektronických knih Calibre (Wikipedie). Přehled novinek v poznámkách k vydání. Vypíchnuta je podpora AI.
Wasmer byl vydán ve verzi 7.0. Jedná se o běhové prostředí pro programy ve WebAssembly. Zdrojové kódy jsou k dispozici na GitHubu pod licencí MIT.
V reakci na nepopulární plán Microsoftu ještě více ve Windows prohloubit integraci umělé inteligence Copilot, Opera na sociální síti 𝕏 oznámila, že připravuje nativní linuxovou verzi prohlížeče Opera GX. Jedná se o internetový prohlížeč zaměřený pro hráče, přičemž obsahuje všechny základní funkce běžného prohlížeče Opera. Kromě integrace sociálních sítí prohlížeč například disponuje 'omezovačem', který umožňuje uživatelům omezit využití sítě, procesoru a paměti prohlížečem, aby se tak šetřily systémové zdroje pro jinou aktivitu.
NVIDIA vydala nativního klienta své cloudové herní služby GeForce NOW pro Linux. Zatím v beta verzi.
Když se tady tak rojí zápisky o Pythonu a C++, musím přispěchat se svou troškou do mlýna - totiž s postem, který je o obojím.
Občas zde prudím se svojí Žirafou, což je indexátor souborového systému, prostě parodie na locate. Používám ji převážně jako "media library" k XMMS.
Taková grafická aplikace, to je soft-realtime záležitost. Na čase odpovědi totiž záleží, pokud se to zasekne, uživatel (tedy já) sice počká, ale je naštvaný. Žirafa navíc zobrazuje výsledky vyhledávání hned během psaní dotazu - takže na výkonu záleží, protože mezi dvěma stisky kláves je tak desetina sekundy.
Žirafa je celá v Pythonu (+GTK). Ze snahy napsat rychlou aplikaci v "pomalém" Pythonu jsem získal některá ponaučení, o která se teď hodlám podělit.
Что такое Python? Python je především, moji milí čtenáři, skriptovací jazyk. Co to vlastně znamená? Přiznám se, že osobně tento termín nemám rád, raději bych řekl, že je to dynamicky typovaný objektově orientovaný jazyk velmi vysoké úrovně.
Skriptovací jazyk je typicky prostředek pro rozšíření funkčnosti nějaké aplikace. Počítá se s tím, že s ním pracuje přímo koncový uživatel oné aplikace, nikoli pouze původní vývojář. Uživatel si naprogramuje novou funkci tak, že manipuluje s objekty té aplikace. Samotná aplikace je obvykle napsána v nějakém jiném jazyce (třeba C++) a některé objekty prostě zpřístupní ke skriptování (tím definuje API).
Jenže Python není nějaký Visual Basic zašitý do Excelu, je to univerzální samostatný jazyk. Chyba lávky. Když programujete v Pythonu tak v podstatě neděláte nic jiného, než že přistupujete k objektům, které jsou implementované v C. Vy prostě skriptujete prostředí, které se sestává ze seznamů, slovníků, stringů, integerů - a žádný z těchto objektů není napsaný v Pythonu.
Srovnejte nyní, moji milí hackeři, s Javou, od které si odmyslíte just-in-time kompilaci (java -Xint). Program v takovéto Javě se skládá z bajtkódu, jehož instrukce se interpretují. Python má taky svůj bajtkód, který interpretuje. Zásadní rozdíl je v tom, že celá standardní knihovna Javy je napsaná v Javě samotné.
Co z toho plyne pro chudáka programátora, který se snaží napsat rychlou aplikaci? Když si napíše nějaký svůj kontejner (třeba variaci na ArrayList), tak má šanci být rychlejší než knihovní implementace (protože si to napsal optimalizovaně pro své konkrétní potřeby). Když se ale o stejnou věc pokusí Pythonista, s velkou pravděpodobností pohoří, protože interpretovanou implementací nemůže konkurovat nativnímu kódu vylezlému z GCC.
Ústřední zásada pro tvorbu rychlých aplikací v Pythonu zní: drž se standardní knihovny. Standardní knihovna bývají dobře optimalizované (platí pro všechny jazyky), v Pythonu je to zvýrazněné tím, že její výkonově kritická část je v C.
V Žirafě jsem potřeboval následující věc: mám dva seznamy integerů (idčka dokumentů) a potřebuji vytvořit jejich množinové sjednocení. Nejrychlejší způsob, jak tohle udělat v Pythonu je takovýto:
def union(a,b):
return list(set(a).union(set(b)))
a to přesto, že oba vstupní seznamy jsou seřazené a stačil by tedy jednoprůchodový algoritmus. Když si takovýto (myslím že optimální) algoritmus napíšete v Pythonu, bude to mnohem pomalejší, než řešení, které oba listy nejprve zkonvertuje na množiny a pak z toho zase vytvoří seznam. (Zmíněný jednoprůchodový algoritmus taky dojede na to, že seznam, do kterého akumulujeme výsledek, se během výpočtu bude muset mnohokrát realokovat.)
V situaci, kdy optimální algoritmus je pomalý, je potřeba vyrobit kýženou implementaci v C nebo něčem podobném. Jak se to dělá v Céčku se můžete dočíst například zde. Není to moc hezké, je potřeba spousta balastoidního kódu starajícího se o vnitřnosti Pythonu. Posléze jsem objevil boost_python, což hromada C++ šablonové magie, která udělá většinu práce za vás.
Kus zdrojáku vydá za tisíc slov; zde je implementace třídy World:
#include <boost/python.hpp>
using namespace boost::python;
struct World
{
std::string msg;
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
int my_sum(list lst) //sums all integers in the list
{
int result = 0;
for(int i = 0; i < len(lst); i++)
{
int val = extract<int>(lst[i]);
result += val;
}
return result;
};
};
BOOST_PYTHON_MODULE(world)
{
class_<World>("World")
.def("greet", &World::greet)
.def("set", &World::set)
.def("my_sum", &World::my_sum)
;
};
Přeloží se to nějak takhle:
g++ world.cpp -I/usr/include/python2.5 -shared -o world.so -lboost_python
a používá následovně:
>>> import world
>>> w = world.World()
>>> w.set("hi!")
>>> w.greet()
'hi!'
>>> w.my_sum([1,2,100])
103
>>>
Python je skvělý jazyk a líbí se mi čím dál víc. Je ale dobré vědět, jaké jsou jeho vlastnsti a možnosti. Když už jste donuceni udělat rozšíření v kompilovaném jezyce, použijte šikovnou knihovnu.
Tiskni
Sdílej:
Posléze jsem objevil boost_python, což hromada C++ šablonové magie, která udělá většinu práce za vás.Pamatuju si, že jsem si před 5 lety hrál s boost_python pod MSVC a můj relativně jednoduchý program o dvou .cpp souborech to kompilovalo 10 minut
paskma@paskma:boost$ time g++ world.cpp -I/usr/include/python2.5 -shared -o world.so -lboost_python real 0m3.387s user 0m2.656s sys 0m0.140sGenuine Intel(R) CPU T2300 @ 1.66GHz
>>> import util >>> util.union(range(1, 10, 2), range(2, 10, 2)) [1, 2, 3, 4, 5, 6, 7, 8, 9]