Ubuntu pro testování nových verzí vydává měsíční snapshoty. Dnes vyšel 1. snapshot Ubuntu 26.04 LTS (Resolute Raccoon).
Zástupci členských států EU se včera shodli na návrhu, který má bojovat proti šíření materiálů na internetu zobrazujících sexuální zneužívání dětí. Nařízení známé pod zkratkou CSAM a přezdívané chat control mělo množství kritiků a dlouho nebyla pro jeho schválení dostatečná podpora. Pro schválení byla potřeba kvalifikovaná většina a dánské předsednictví v Radě EU se snažilo dosáhnout kompromisu. Návrh nakonec po dlouhých týdnech
… více »Britské herní studio Facepunch stojící za počítačovými hrami Garry's Mod a Rust uvolnilo svůj herní engine s&box (Wikipedie) jako open source. Zdrojové kódy jsou k dispozici na GitHubu pod licencí MIT. Herní engine s&box je postavený nad proprietárním herním enginem Source 2 od společnosti Valve.
Vývoj programovacího jazyka Zig byl přesunut z GitHubu na Codeberg. Sponzoring na Every.
Stejně jako GNOME i KDE Plasma končí s X11. KDE Plasma 6.8 poběží už pouze nad Waylandem. Aplikace pro X11 budou využívat XWayland.
Poslanci Evropského parlamentu dnes vyzvali k výraznému zvýšení ochrany nezletilých na internetu, včetně zákazu vstupu na sociální sítě pro osoby mladší 16 let. Legislativně nezávazná zpráva, kterou dnes odsouhlasil Evropský parlament poměrem 493 hlasů pro ku 92 proti, kromě zavedení věkové hranice 16 let pro využívání sociálních sítí, platforem pro sdílení videí či společníků s umělou inteligencí (AI) vyzývá také k zákazu … více »
Doom v KiCadu nebo na osciloskopu? Žádný problém: KiDoom: Running DOOM on PCB Traces a ScopeDoom: DOOM on an Oscilloscope via Sound Card.
Po AlmaLinuxu byl v nové stabilní verzi 10.1 vydán také Rocky Linux. Přehled novinek v poznámkách k vydání.
Open source reimplementace počítačových her Tomb Raider I a Tomb Raider II spolu s dalšími vylepšeními a opravami chyb TRX byla vydána ve verzi 1.0. Jedná se o sloučení projektů / enginů TR1X a TR2X do jednoho TRX. Videoukázka na YouTube.
Společnost Seznam.cz spouští konverzační nástroj založený na umělé inteligenci Seznam Asistent. Asistent využívá vlastní jazykový model SeLLMa a dočasně i komerční modely od OpenAI provozované v evropských datacentrech prostřednictvím Microsoft Azure. Dlouhodobým cílem Seznamu je provozovat Asistenta výhradně na interních jazykových modelech a ve vlastních datových centrech.
Když se tady tak rojí zápisky o Pythonu a C++, musím přispěchat se svou troškou do mlýna - totiž s postem, který je o obojím.
Občas zde prudím se svojí Žirafou, což je indexátor souborového systému, prostě parodie na locate. Používám ji převážně jako "media library" k XMMS.
Taková grafická aplikace, to je soft-realtime záležitost. Na čase odpovědi totiž záleží, pokud se to zasekne, uživatel (tedy já) sice počká, ale je naštvaný. Žirafa navíc zobrazuje výsledky vyhledávání hned během psaní dotazu - takže na výkonu záleží, protože mezi dvěma stisky kláves je tak desetina sekundy.
Žirafa je celá v Pythonu (+GTK). Ze snahy napsat rychlou aplikaci v "pomalém" Pythonu jsem získal některá ponaučení, o která se teď hodlám podělit.
Что такое Python? Python je především, moji milí čtenáři, skriptovací jazyk. Co to vlastně znamená? Přiznám se, že osobně tento termín nemám rád, raději bych řekl, že je to dynamicky typovaný objektově orientovaný jazyk velmi vysoké úrovně.
Skriptovací jazyk je typicky prostředek pro rozšíření funkčnosti nějaké aplikace. Počítá se s tím, že s ním pracuje přímo koncový uživatel oné aplikace, nikoli pouze původní vývojář. Uživatel si naprogramuje novou funkci tak, že manipuluje s objekty té aplikace. Samotná aplikace je obvykle napsána v nějakém jiném jazyce (třeba C++) a některé objekty prostě zpřístupní ke skriptování (tím definuje API).
Jenže Python není nějaký Visual Basic zašitý do Excelu, je to univerzální samostatný jazyk. Chyba lávky. Když programujete v Pythonu tak v podstatě neděláte nic jiného, než že přistupujete k objektům, které jsou implementované v C. Vy prostě skriptujete prostředí, které se sestává ze seznamů, slovníků, stringů, integerů - a žádný z těchto objektů není napsaný v Pythonu.
Srovnejte nyní, moji milí hackeři, s Javou, od které si odmyslíte just-in-time kompilaci (java -Xint). Program v takovéto Javě se skládá z bajtkódu, jehož instrukce se interpretují. Python má taky svůj bajtkód, který interpretuje. Zásadní rozdíl je v tom, že celá standardní knihovna Javy je napsaná v Javě samotné.
Co z toho plyne pro chudáka programátora, který se snaží napsat rychlou aplikaci? Když si napíše nějaký svůj kontejner (třeba variaci na ArrayList), tak má šanci být rychlejší než knihovní implementace (protože si to napsal optimalizovaně pro své konkrétní potřeby). Když se ale o stejnou věc pokusí Pythonista, s velkou pravděpodobností pohoří, protože interpretovanou implementací nemůže konkurovat nativnímu kódu vylezlému z GCC.
Ústřední zásada pro tvorbu rychlých aplikací v Pythonu zní: drž se standardní knihovny. Standardní knihovna bývají dobře optimalizované (platí pro všechny jazyky), v Pythonu je to zvýrazněné tím, že její výkonově kritická část je v C.
V Žirafě jsem potřeboval následující věc: mám dva seznamy integerů (idčka dokumentů) a potřebuji vytvořit jejich množinové sjednocení. Nejrychlejší způsob, jak tohle udělat v Pythonu je takovýto:
def union(a,b):
return list(set(a).union(set(b)))
a to přesto, že oba vstupní seznamy jsou seřazené a stačil by tedy jednoprůchodový algoritmus. Když si takovýto (myslím že optimální) algoritmus napíšete v Pythonu, bude to mnohem pomalejší, než řešení, které oba listy nejprve zkonvertuje na množiny a pak z toho zase vytvoří seznam. (Zmíněný jednoprůchodový algoritmus taky dojede na to, že seznam, do kterého akumulujeme výsledek, se během výpočtu bude muset mnohokrát realokovat.)
V situaci, kdy optimální algoritmus je pomalý, je potřeba vyrobit kýženou implementaci v C nebo něčem podobném. Jak se to dělá v Céčku se můžete dočíst například zde. Není to moc hezké, je potřeba spousta balastoidního kódu starajícího se o vnitřnosti Pythonu. Posléze jsem objevil boost_python, což hromada C++ šablonové magie, která udělá většinu práce za vás.
Kus zdrojáku vydá za tisíc slov; zde je implementace třídy World:
#include <boost/python.hpp>
using namespace boost::python;
struct World
{
std::string msg;
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
int my_sum(list lst) //sums all integers in the list
{
int result = 0;
for(int i = 0; i < len(lst); i++)
{
int val = extract<int>(lst[i]);
result += val;
}
return result;
};
};
BOOST_PYTHON_MODULE(world)
{
class_<World>("World")
.def("greet", &World::greet)
.def("set", &World::set)
.def("my_sum", &World::my_sum)
;
};
Přeloží se to nějak takhle:
g++ world.cpp -I/usr/include/python2.5 -shared -o world.so -lboost_python
a používá následovně:
>>> import world
>>> w = world.World()
>>> w.set("hi!")
>>> w.greet()
'hi!'
>>> w.my_sum([1,2,100])
103
>>>
Python je skvělý jazyk a líbí se mi čím dál víc. Je ale dobré vědět, jaké jsou jeho vlastnsti a možnosti. Když už jste donuceni udělat rozšíření v kompilovaném jezyce, použijte šikovnou knihovnu.
Tiskni
Sdílej:
Posléze jsem objevil boost_python, což hromada C++ šablonové magie, která udělá většinu práce za vás.Pamatuju si, že jsem si před 5 lety hrál s boost_python pod MSVC a můj relativně jednoduchý program o dvou .cpp souborech to kompilovalo 10 minut
paskma@paskma:boost$ time g++ world.cpp -I/usr/include/python2.5 -shared -o world.so -lboost_python real 0m3.387s user 0m2.656s sys 0m0.140sGenuine Intel(R) CPU T2300 @ 1.66GHz
>>> import util >>> util.union(range(1, 10, 2), range(2, 10, 2)) [1, 2, 3, 4, 5, 6, 7, 8, 9]