Byl aktualizován seznam 500 nejvýkonnějších superpočítačů na světě TOP500. Nejvýkonnějším superpočítačem zůstává El Capitan od HPE (Cray) s výkonem 1,742 exaFLOPS. Druhý Frontier má výkon 1,353 exaFLOPS. Třetí Aurora má výkon 1,012 exaFLOPS. Nejvýkonnější český počítač C24 klesl na 165 místo. Karolina, GPU partition klesla na 195. místo a Karolina, CPU partition na 421. místo. Další přehledy a statistiky na stránkách projektu.
Oficiálně byl vydán Android 16. Detaily na blogu a stránkách věnovaných vývojářům.
Byla vydána nová verze 14.3 svobodného unixového operačního systému FreeBSD. Podrobný přehled novinek v poznámkách k vydání.
CSIRT.CZ upozorňuje, že na základě rozhodnutí federálního soudu ve Spojených státech budou veškeré konverzace uživatelů s ChatGPT uchovávány. Včetně těch smazaných.
Ač semestr ve škole právě končí, bastlíři ze studentského klubu Silicon Hill neodpočívají a opět se jako každý měsíc hlásí s pravidelným bastlířským setkáním Virtuální Bastlírna, kde si můžete s ostatními techniky popovídat jako u piva o novinkách, o elektronice, softwaru, vědě, technice obecně, ale také o bizarních tématech, která se za poslední měsíc na internetu vyskytla.
Z novinek za zmínku stojí Maker Faire, kde Pájeníčko předvedlo … více »Na WWDC25 byl představen balíček Containerization a nástroj container pro spouštění linuxových kontejnerů na macOS. Jedná se o open source software pod licencí Apache 2.0 napsaný v programovacím jazyce Swift.
Do 16. června do 19:00 běží na Steamu přehlídka nadcházejících her Festival Steam Next | červen 2025 doplněná demoverzemi, přenosy a dalšími aktivitami. Demoverze lze hrát zdarma.
Apple na své vývojářské konferenci WWDC25 (Worldwide Developers Conference, keynote) představil řadu novinek: designový materiál Liquid Glass, iOS 26, iPadOS 26, macOS Tahoe 26, watchOS 26, visionOS 26, tvOS 26, nové funkce Apple Intelligence, …
Organizátoři konference LinuxDays 2025, jež proběhne o víkendu 4. a 5. října 2025 v Praze na FIT ČVUT, spustili přihlašování přednášek (do 31. srpna) a sběr námětů na zlepšení.
Po roce byla vydána nová stabilní verze 25.6.0 svobodného multiplatformního multimediálního přehrávače SMPlayer (Wikipedie).
Když jsem se loni rozhodoval, jaké semináře si zvolit do 4. ročníku, programování byla moje jasná volba.
Měl jsem štěstí, že se našlo víc lidí a seminář se otevřel. Hned v první hodině jsme dostali za úkol napsat algoritmus pro výčet prvočísel, následně zakreslit jeho vývojový diagram a ti co už měli zkušenosti s programováním ho i napsat v nějakém programovacín jazyku. Tento úkol se mi velice líbil, a tak jsem se hned pustil do práce. První verze programu jsem měl za chvíli a fungovali dobře, jako jazyk jsem zvolil C++. Jedinou nevýhodou byla rychlost, kdyý jsem chtěl vypsat všechna prvočísla do 100 000, tak to trvalo +- 1 minutu. A tak jsem začal optimalizovat kód, nejprve sem dělal jen drobné změny, potom použil při kompilaci přepínač -O3, čímž jsem se dostal asi na dobu 32s pro prvočísla do 100 000.
Neuspokojilo mě to, ačkoliv to znamenalo zrychlení zhruba o 50%, a tak jsem nakonec celý program úplně přepsal a zvolil jinačí způsob hledání prvočísel. Což se ukázalo jako dobré řešení. Doba pro výčet prvočísel do 100 000 byla kolem 0.900s a po par optimalizacich jsem se dostal na 0.005s. Nakonec jsem se rozhodl to napsat i v ruby, ve kterem to jede sice pomaleji, ale i tak je to rychlejsi nez muj prvni navrh v C++.
Celkově z toho mám dobrý pocit, ale věřím, že by se to dalo ještě vylopšit, ačkoliv už nevím jak. No jediný problém jsou nároky na pamět pro výčet prvočísel do 1 000 000 000 si to vezme skoro 1GB paměti
Kód v C++:
#include <cmath> #include <iostream> using namespace std; typedef unsigned long long myInt; int main ( int argc, char *argv[] ){ myInt nRozsah = 100000; //cout << "Zadejte rozsah:" << endl; //cin >> nRozsah; nRozsah++; bool *polePravda = new bool[ nRozsah]; long op = long(sqrt(nRozsah)); for ( myInt j = 3; j < op; j += 2 ){ if(polePravda[j]==false){ for ( myInt k = j; k <= nRozsah/j; k += 2 ){ polePravda[ k * j ] = true; } } } cout << 2 << endl; for ( myInt l = 3; l < nRozsah; l += 2 ){ if ( polePravda[l] == false){ cout << l; } } return 0;Kód v Ruby:
#!/usr/bin/env ruby $KCODE = 'UTF-8' require 'mathn' nRozsah = 1000000 polePravda = Array.new(nRozsah, 0) op = Math.sqrt(nRozsah) j = 3 loop { if polePravda[j] == 0 then k = j loop do polePravda[ k * j ] = 1 k +=2 break if k > nRozsah/j end end j += 2 break if j >= op } x = 3 loop { if polePravda[x] == 0 then puts x end x += 2 break if x > nRozsah }
Jinak časy byly meřeny pomocí příkazu time a výstup byl přesměrován do souboru.
Tiskni
Sdílej:
Diskuse byla administrátory uzamčena
Generují náhodné číslo pro něž ověří je-lis jistou pravděpodobností
prvočíslo, pokud není generují znovu.
((prvočíslo * prvočíslo) + 1)
věřím, že by se to dalo ještě vylopšit, ačkoliv už nevím jak
Wikipedie se u Eratosthenova síta zmiňuje o urychlování pomocí kruhové faktorizace, tak to můžeš zkusit
Tvůj program je ± Eratosthenovo síto, to co je na wikipedii pod heslem wheel factorization je ale jedna z metod rychlých odhadů prvočíselnosti. (podobné používají třeba kryptografické programy při generování klíčů - teprve pokuď projde číslo některým z těchto testů, zkouší se dál, jestli je to skutečně prvočíslo)
#!/usr/bin/env ruby nRozsah = 10000 puts (2..nRozsah).inject((2..nRozsah).to_a) {|res, i| res.select{|n|n==i||n%i!=0} }
#include <stdio.h>
#include <math.h>
#include "error.h"
#define N 100000000LU
#define UI \
(unsigned int)
#define SIZE(num) \
(num / (sizeof(long) * 8) + 2)
#define BITS \
(sizeof(long) * 8)
#define BITPOS(index) \
((index % BITS) + 1)
#define ArrayPos(index) \
(UI index/BITS+1)
#define OutArrayError(pole, index) \
Error("Index %ld mimo rozsah 0..%ld", (long) index, (long) pole[0])
#define OutArray(pole, index) \
(index < 0 || index > pole[0]) ? OutArrayError(pole, index),0 :
#define BitArray(jmeno_pole, velikost) \
unsigned long jmeno_pole[SIZE(velikost)] = {0}; \
jmeno_pole[0] = velikost
#ifndef USE_INLINE
#define GetBitIn(jmeno_pole, index) \
(jmeno_pole[ArrayPos(index)] & (1LU << BITPOS(index)) ? 1 : 0)
#define GetBit(jmeno_pole, index) \
OutArray(jmeno_pole, index) GetBitIn(jmeno_pole, index)
#define SetBit(pole, index, vyraz) \
if(!(index >= 0U && index <= pole[0]))\
OutArrayError(pole, index);\
if(vyraz != 0) \
pole[ArrayPos(index)] |= 1LU << BITPOS(index); \
else \
pole[ArrayPos(index)] ^= GetBit(pole, index) << BITPOS(index)
#endif
#ifdef USE_INLINE
inline int GetBit(unsigned long pole[], long index)
{
if(index < 1 || index > pole[0])
Error("Index %ld mimo rozsah 0..%ld", (long) index, (long) pole[0]);
return pole[ArrayPos(index)] & ((1LU << BITPOS(index)) ? 1 : 0);
}
inline void SetBit(unsigned long pole[], long index, int vyraz)
{
if(index < 0 || index > pole[0])
Error("Index %ld mimo rozsah 0..%ld", (long) index, (long) pole[0]);
if(vyraz != 0)
pole[ArrayPos(index)] |= 1LU << BITPOS(index);
else
pole[ArrayPos(index)] ^= GetBit(pole, index) << BITPOS(index);
}
#endif
int main()
{
BitArray(eSito, N);
SetBit(eSito, 0, 1);
SetBit(eSito, 1, 0);
for(unsigned int i = 2; i < N; i++)
{
SetBit(eSito, i, 0);
}
unsigned long sqrt_n = sqrt(N);
for(unsigned int i = 2; i < sqrt_n; i++)
{
if(GetBit(eSito, i) == 0)
{
for(unsigned int j = i * i; j < N; j += i)
{
SetBit(eSito, j, 1);
}
}
}
int count = 0;
int prvocisla[10] = {0};
for(unsigned int i = N - 1; i > 1; i--)
{
if(GetBit(eSito, i) == 0)
{
prvocisla[count] = i;
count += 1;
if(count == 10)
break;
}
}
for(int i = 0; i < 10; i++)
printf("%d\n", prvocisla[9-i]);
return 0;
}
Funkcni by to byt melo, nejrychlejsi je to pri pouziti maker, inlive funkce jsou tam pro porovnani (bylo v zadani) a je to cca o 1s pomalejsi. Jeste dodam, ze se vypisuje jen poslednich 10prvocisel, vypisovat vsechno by bylo pochopitelne znacne pomalejsi, kuli io operacim.