Masivní výpadek elektrického proudu zasáhl velkou část České republiky. Hasiči vyjížděli k většímu počtu lidí uvězněných ve výtazích. Výpadek se týkal zejména severozápadu republiky, dotkl se také Prahy, Středočeského nebo Královéhradeckého kraje. Ochromen byl provoz pražské MHD, linky metra se už podařilo obnovit. Výpadek proudu postihl osm rozvoden přenosové soustavy, pět z nich je nyní opět v provozu. Příčina problémů je však stále neznámá. Po 16. hodině zasedne Ústřední krizový štáb.
Po více než roce vývoje od vydání verze 5.40 byla vydána nová stabilní verze 5.42 programovacího jazyka Perl (Wikipedie). Do vývoje se zapojilo 64 vývojářů. Změněno bylo přibližně 280 tisíc řádků v 1 500 souborech. Přehled novinek a změn v podrobném seznamu.
Byla vydána nová stabilní verze 7.5 webového prohlížeče Vivaldi (Wikipedie). Postavena je na Chromiu 138. Přehled novinek i s náhledy v příspěvku na blogu.
Sniffnet je multiplatformní aplikace pro sledování internetového provozu. Ke stažení pro Windows, macOS i Linux. Jedná se o open source software. Zdrojové kódy v programovacím jazyce Rust jsou k dispozici na GitHubu. Vývoj je finančně podporován NLnet Foundation.
Byl vydán Debian Installer Trixie RC 2, tj. druhá RC verze instalátoru Debianu 13 s kódovým názvem Trixie.
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za červen (YouTube).
Libreboot (Wikipedie) – svobodný firmware nahrazující proprietární BIOSy, distribuce Corebootu s pravidly pro proprietární bloby – byl vydán ve verzi 25.06 "Luminous Lemon". Přidána byla podpora desek Acer Q45T-AM a Dell Precision T1700 SFF a MT. Současně byl ve verzi 25.06 "Onerous Olive" vydán také Canoeboot, tj. fork Librebootu s ještě přísnějšími pravidly.
Licence GNU GPLv3 o víkendu oslavila 18 let. Oficiálně vyšla 29. června 2007. Při té příležitosti Richard E. Fontana a Bradley M. Kuhn restartovali, oživili a znovu spustili projekt Copyleft-Next s cílem prodiskutovat a navrhnout novou licenci.
Svobodný nemocniční informační systém GNU Health Hospital Information System (HIS) (Wikipedie) byl vydán ve verzi 5.0 (Mastodon).
Open source mapová a navigační aplikace OsmAnd (OpenStreetMap Automated Navigation Directions, Wikipedie, GitHub) oslavila 15 let.
Když jsem se loni rozhodoval, jaké semináře si zvolit do 4. ročníku, programování byla moje jasná volba.
Měl jsem štěstí, že se našlo víc lidí a seminář se otevřel. Hned v první hodině jsme dostali za úkol napsat algoritmus pro výčet prvočísel, následně zakreslit jeho vývojový diagram a ti co už měli zkušenosti s programováním ho i napsat v nějakém programovacín jazyku. Tento úkol se mi velice líbil, a tak jsem se hned pustil do práce. První verze programu jsem měl za chvíli a fungovali dobře, jako jazyk jsem zvolil C++. Jedinou nevýhodou byla rychlost, kdyý jsem chtěl vypsat všechna prvočísla do 100 000, tak to trvalo +- 1 minutu. A tak jsem začal optimalizovat kód, nejprve sem dělal jen drobné změny, potom použil při kompilaci přepínač -O3, čímž jsem se dostal asi na dobu 32s pro prvočísla do 100 000.
Neuspokojilo mě to, ačkoliv to znamenalo zrychlení zhruba o 50%, a tak jsem nakonec celý program úplně přepsal a zvolil jinačí způsob hledání prvočísel. Což se ukázalo jako dobré řešení. Doba pro výčet prvočísel do 100 000 byla kolem 0.900s a po par optimalizacich jsem se dostal na 0.005s. Nakonec jsem se rozhodl to napsat i v ruby, ve kterem to jede sice pomaleji, ale i tak je to rychlejsi nez muj prvni navrh v C++.
Celkově z toho mám dobrý pocit, ale věřím, že by se to dalo ještě vylopšit, ačkoliv už nevím jak. No jediný problém jsou nároky na pamět pro výčet prvočísel do 1 000 000 000 si to vezme skoro 1GB paměti
Kód v C++:
#include <cmath> #include <iostream> using namespace std; typedef unsigned long long myInt; int main ( int argc, char *argv[] ){ myInt nRozsah = 100000; //cout << "Zadejte rozsah:" << endl; //cin >> nRozsah; nRozsah++; bool *polePravda = new bool[ nRozsah]; long op = long(sqrt(nRozsah)); for ( myInt j = 3; j < op; j += 2 ){ if(polePravda[j]==false){ for ( myInt k = j; k <= nRozsah/j; k += 2 ){ polePravda[ k * j ] = true; } } } cout << 2 << endl; for ( myInt l = 3; l < nRozsah; l += 2 ){ if ( polePravda[l] == false){ cout << l; } } return 0;Kód v Ruby:
#!/usr/bin/env ruby $KCODE = 'UTF-8' require 'mathn' nRozsah = 1000000 polePravda = Array.new(nRozsah, 0) op = Math.sqrt(nRozsah) j = 3 loop { if polePravda[j] == 0 then k = j loop do polePravda[ k * j ] = 1 k +=2 break if k > nRozsah/j end end j += 2 break if j >= op } x = 3 loop { if polePravda[x] == 0 then puts x end x += 2 break if x > nRozsah }
Jinak časy byly meřeny pomocí příkazu time a výstup byl přesměrován do souboru.
Tiskni
Sdílej:
Diskuse byla administrátory uzamčena
Generují náhodné číslo pro něž ověří je-lis jistou pravděpodobností
prvočíslo, pokud není generují znovu.
((prvočíslo * prvočíslo) + 1)
věřím, že by se to dalo ještě vylopšit, ačkoliv už nevím jak
Wikipedie se u Eratosthenova síta zmiňuje o urychlování pomocí kruhové faktorizace, tak to můžeš zkusit
Tvůj program je ± Eratosthenovo síto, to co je na wikipedii pod heslem wheel factorization je ale jedna z metod rychlých odhadů prvočíselnosti. (podobné používají třeba kryptografické programy při generování klíčů - teprve pokuď projde číslo některým z těchto testů, zkouší se dál, jestli je to skutečně prvočíslo)
#!/usr/bin/env ruby nRozsah = 10000 puts (2..nRozsah).inject((2..nRozsah).to_a) {|res, i| res.select{|n|n==i||n%i!=0} }
#include <stdio.h>
#include <math.h>
#include "error.h"
#define N 100000000LU
#define UI \
(unsigned int)
#define SIZE(num) \
(num / (sizeof(long) * 8) + 2)
#define BITS \
(sizeof(long) * 8)
#define BITPOS(index) \
((index % BITS) + 1)
#define ArrayPos(index) \
(UI index/BITS+1)
#define OutArrayError(pole, index) \
Error("Index %ld mimo rozsah 0..%ld", (long) index, (long) pole[0])
#define OutArray(pole, index) \
(index < 0 || index > pole[0]) ? OutArrayError(pole, index),0 :
#define BitArray(jmeno_pole, velikost) \
unsigned long jmeno_pole[SIZE(velikost)] = {0}; \
jmeno_pole[0] = velikost
#ifndef USE_INLINE
#define GetBitIn(jmeno_pole, index) \
(jmeno_pole[ArrayPos(index)] & (1LU << BITPOS(index)) ? 1 : 0)
#define GetBit(jmeno_pole, index) \
OutArray(jmeno_pole, index) GetBitIn(jmeno_pole, index)
#define SetBit(pole, index, vyraz) \
if(!(index >= 0U && index <= pole[0]))\
OutArrayError(pole, index);\
if(vyraz != 0) \
pole[ArrayPos(index)] |= 1LU << BITPOS(index); \
else \
pole[ArrayPos(index)] ^= GetBit(pole, index) << BITPOS(index)
#endif
#ifdef USE_INLINE
inline int GetBit(unsigned long pole[], long index)
{
if(index < 1 || index > pole[0])
Error("Index %ld mimo rozsah 0..%ld", (long) index, (long) pole[0]);
return pole[ArrayPos(index)] & ((1LU << BITPOS(index)) ? 1 : 0);
}
inline void SetBit(unsigned long pole[], long index, int vyraz)
{
if(index < 0 || index > pole[0])
Error("Index %ld mimo rozsah 0..%ld", (long) index, (long) pole[0]);
if(vyraz != 0)
pole[ArrayPos(index)] |= 1LU << BITPOS(index);
else
pole[ArrayPos(index)] ^= GetBit(pole, index) << BITPOS(index);
}
#endif
int main()
{
BitArray(eSito, N);
SetBit(eSito, 0, 1);
SetBit(eSito, 1, 0);
for(unsigned int i = 2; i < N; i++)
{
SetBit(eSito, i, 0);
}
unsigned long sqrt_n = sqrt(N);
for(unsigned int i = 2; i < sqrt_n; i++)
{
if(GetBit(eSito, i) == 0)
{
for(unsigned int j = i * i; j < N; j += i)
{
SetBit(eSito, j, 1);
}
}
}
int count = 0;
int prvocisla[10] = {0};
for(unsigned int i = N - 1; i > 1; i--)
{
if(GetBit(eSito, i) == 0)
{
prvocisla[count] = i;
count += 1;
if(count == 10)
break;
}
}
for(int i = 0; i < 10; i++)
printf("%d\n", prvocisla[9-i]);
return 0;
}
Funkcni by to byt melo, nejrychlejsi je to pri pouziti maker, inlive funkce jsou tam pro porovnani (bylo v zadani) a je to cca o 1s pomalejsi. Jeste dodam, ze se vypisuje jen poslednich 10prvocisel, vypisovat vsechno by bylo pochopitelne znacne pomalejsi, kuli io operacim.