Typst byl vydán ve verzi 0.14. Jedná se o rozšiřitelný značkovací jazyk a překladač pro vytváření dokumentů včetně odborných textů s matematickými vzorci, diagramy či bibliografií.
Specialisté společnosti ESET zaznamenali útočnou kampaň, která cílí na uživatele a uživatelky v Česku a na Slovensku. Útočníci po telefonu zmanipulují oběť ke stažení falešné aplikace údajně od České národní banky (ČNB) nebo Národní banky Slovenska (NBS), přiložení platební karty k telefonu a zadání PINu. Malware poté v reálném čase přenese data z karty útočníkovi, který je bezkontaktně zneužije u bankomatu nebo na platebním terminálu.
V Ubuntu 25.10 byl balíček základních nástrojů gnu-coreutils nahrazen balíčkem rust-coreutils se základními nástroji přepsanými do Rustu. Ukázalo se, že nový "date" znefunkčnil automatickou aktualizaci. Pro obnovu je nutno balíček rust-coreutils manuálně aktualizovat.
VST 3 je nově pod licencí MIT. S verzí 3.8.0 proběhlo přelicencování zdrojových kódů z licencí "Proprietary Steinberg VST3 License" a "General Public License (GPL) Version 3". VST (Virtual Studio Technology, Wikipedie) je softwarové rozhraní pro komunikaci mezi hostitelským programem a zásuvnými moduly (pluginy), kde tyto moduly slouží ke generování a úpravě digitálního audio signálu.
Open source 3D herní a simulační engine Open 3D Engine (O3DE) byl vydán v nové verzi 25.10. Podrobný přehled novinek v poznámkách k vydání.
V Londýně probíhá dvoudenní Ubuntu Summit 25.10. Na programu je řada zajímavých přednášek. Zhlédnout je lze také na YouTube (23. 10. a 24. 10.).
Gemini CLI umožňuje používání AI Gemini přímo v terminálu. Vydána byla verze 0.10.0.
Konference OpenAlt 2025 proběhne již příští víkend 1. a 2. listopadu v Brně. Nabídne přibližně 80 přednášek a workshopů rozdělených do 7 tematických tracků. Program se může ještě mírně měnit až do samotné konference, a to s ohledem na opožděné úpravy abstraktů i případné podzimní virózy. Díky partnerům je vstup na konferenci zdarma. Registrace není nutná. Vyplnění formuláře však pomůže s lepším plánováním dalších ročníků konference.
Samsung představil headset Galaxy XR se 4K Micro-OLED displeji, procesorem Snapdragon XR2+ Gen 2, 16 GB RAM, 256 GB úložištěm, operačním systémem Android XR a Gemini AI.
Před konferencí Next.js Conf 2025 bylo oznámeno vydání nové verze 16 open source frameworku Next.js (Wikipedie) pro psaní webových aplikací v Reactu. Přehled novinek v příspěvku na blogu.
Když jsem se loni rozhodoval, jaké semináře si zvolit do 4. ročníku, programování byla moje jasná volba.
Měl jsem štěstí, že se našlo víc lidí a seminář se otevřel. Hned v první hodině jsme dostali za úkol napsat algoritmus pro výčet prvočísel, následně zakreslit jeho vývojový diagram a ti co už měli zkušenosti s programováním ho i napsat v nějakém programovacín jazyku. Tento úkol se mi velice líbil, a tak jsem se hned pustil do práce. První verze programu jsem měl za chvíli a fungovali dobře, jako jazyk jsem zvolil C++. Jedinou nevýhodou byla rychlost, kdyý jsem chtěl vypsat všechna prvočísla do 100 000, tak to trvalo +- 1 minutu. A tak jsem začal optimalizovat kód, nejprve sem dělal jen drobné změny, potom použil při kompilaci přepínač -O3, čímž jsem se dostal asi na dobu 32s pro prvočísla do 100 000.
Neuspokojilo mě to, ačkoliv to znamenalo zrychlení zhruba o 50%, a tak jsem nakonec celý program úplně přepsal a zvolil jinačí způsob hledání prvočísel. Což se ukázalo jako dobré řešení. Doba pro výčet prvočísel do 100 000 byla kolem 0.900s a po par optimalizacich jsem se dostal na 0.005s. Nakonec jsem se rozhodl to napsat i v ruby, ve kterem to jede sice pomaleji, ale i tak je to rychlejsi nez muj prvni navrh v C++.
Celkově z toho mám dobrý pocit, ale věřím, že by se to dalo ještě vylopšit, ačkoliv už nevím jak. No jediný problém jsou nároky na pamět pro výčet prvočísel do 1 000 000 000 si to vezme skoro 1GB paměti
Kód v C++:
#include <cmath>
#include <iostream>
using namespace std;
typedef unsigned long long myInt;
int main ( int argc, char *argv[] ){
myInt nRozsah = 100000;
//cout << "Zadejte rozsah:" << endl;
//cin >> nRozsah;
nRozsah++;
bool *polePravda = new bool[ nRozsah];
long op = long(sqrt(nRozsah));
for ( myInt j = 3; j < op; j += 2 ){
if(polePravda[j]==false){
for ( myInt k = j; k <= nRozsah/j; k += 2 ){
polePravda[ k * j ] = true;
}
}
}
cout << 2 << endl;
for ( myInt l = 3; l < nRozsah; l += 2 ){
if ( polePravda[l] == false){
cout << l;
}
}
return 0;
Kód v Ruby:
#!/usr/bin/env ruby
$KCODE = 'UTF-8'
require 'mathn'
nRozsah = 1000000
polePravda = Array.new(nRozsah, 0)
op = Math.sqrt(nRozsah)
j = 3
loop {
if polePravda[j] == 0 then
k = j
loop do
polePravda[ k * j ] = 1
k +=2
break if k > nRozsah/j
end
end
j += 2
break if j >= op
}
x = 3
loop {
if polePravda[x] == 0 then
puts x
end
x += 2
break if x > nRozsah
}
Jinak časy byly meřeny pomocí příkazu time a výstup byl přesměrován do souboru.
Tiskni
Sdílej:
Diskuse byla administrátory uzamčena
))
Generují náhodné číslo pro něž ověří je-lis jistou pravděpodobností
prvočíslo, pokud není generují znovu.
((prvočíslo * prvočíslo) + 1)věřím, že by se to dalo ještě vylopšit, ačkoliv už nevím jak
Wikipedie se u Eratosthenova síta zmiňuje o urychlování pomocí kruhové faktorizace, tak to můžeš zkusit 
Tvůj program je ± Eratosthenovo síto, to co je na wikipedii pod heslem wheel factorization je ale jedna z metod rychlých odhadů prvočíselnosti. (podobné používají třeba kryptografické programy při generování klíčů - teprve pokuď projde číslo některým z těchto testů, zkouší se dál, jestli je to skutečně prvočíslo)
#!/usr/bin/env ruby
nRozsah = 10000
puts (2..nRozsah).inject((2..nRozsah).to_a) {|res, i| res.select{|n|n==i||n%i!=0} }
#include <stdio.h>
#include <math.h>
#include "error.h"
#define N 100000000LU
#define UI \
(unsigned int)
#define SIZE(num) \
(num / (sizeof(long) * 8) + 2)
#define BITS \
(sizeof(long) * 8)
#define BITPOS(index) \
((index % BITS) + 1)
#define ArrayPos(index) \
(UI index/BITS+1)
#define OutArrayError(pole, index) \
Error("Index %ld mimo rozsah 0..%ld", (long) index, (long) pole[0])
#define OutArray(pole, index) \
(index < 0 || index > pole[0]) ? OutArrayError(pole, index),0 :
#define BitArray(jmeno_pole, velikost) \
unsigned long jmeno_pole[SIZE(velikost)] = {0}; \
jmeno_pole[0] = velikost
#ifndef USE_INLINE
#define GetBitIn(jmeno_pole, index) \
(jmeno_pole[ArrayPos(index)] & (1LU << BITPOS(index)) ? 1 : 0)
#define GetBit(jmeno_pole, index) \
OutArray(jmeno_pole, index) GetBitIn(jmeno_pole, index)
#define SetBit(pole, index, vyraz) \
if(!(index >= 0U && index <= pole[0]))\
OutArrayError(pole, index);\
if(vyraz != 0) \
pole[ArrayPos(index)] |= 1LU << BITPOS(index); \
else \
pole[ArrayPos(index)] ^= GetBit(pole, index) << BITPOS(index)
#endif
#ifdef USE_INLINE
inline int GetBit(unsigned long pole[], long index)
{
if(index < 1 || index > pole[0])
Error("Index %ld mimo rozsah 0..%ld", (long) index, (long) pole[0]);
return pole[ArrayPos(index)] & ((1LU << BITPOS(index)) ? 1 : 0);
}
inline void SetBit(unsigned long pole[], long index, int vyraz)
{
if(index < 0 || index > pole[0])
Error("Index %ld mimo rozsah 0..%ld", (long) index, (long) pole[0]);
if(vyraz != 0)
pole[ArrayPos(index)] |= 1LU << BITPOS(index);
else
pole[ArrayPos(index)] ^= GetBit(pole, index) << BITPOS(index);
}
#endif
int main()
{
BitArray(eSito, N);
SetBit(eSito, 0, 1);
SetBit(eSito, 1, 0);
for(unsigned int i = 2; i < N; i++)
{
SetBit(eSito, i, 0);
}
unsigned long sqrt_n = sqrt(N);
for(unsigned int i = 2; i < sqrt_n; i++)
{
if(GetBit(eSito, i) == 0)
{
for(unsigned int j = i * i; j < N; j += i)
{
SetBit(eSito, j, 1);
}
}
}
int count = 0;
int prvocisla[10] = {0};
for(unsigned int i = N - 1; i > 1; i--)
{
if(GetBit(eSito, i) == 0)
{
prvocisla[count] = i;
count += 1;
if(count == 10)
break;
}
}
for(int i = 0; i < 10; i++)
printf("%d\n", prvocisla[9-i]);
return 0;
}
Funkcni by to byt melo, nejrychlejsi je to pri pouziti maker, inlive funkce jsou tam pro porovnani (bylo v zadani) a je to cca o 1s pomalejsi. Jeste dodam, ze se vypisuje jen poslednich 10prvocisel, vypisovat vsechno by bylo pochopitelne znacne pomalejsi, kuli io operacim.