Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie).
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 12.0 (Mastodon). Forgejo je fork Gitei.
Nová čísla časopisů od nakladatelství Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 155 (pdf) a Hello World 27 (pdf).
Hyprland, tj. kompozitor pro Wayland zaměřený na dláždění okny a zároveň grafické efekty, byl vydán ve verzi 0.50.0. Podrobný přehled novinek na GitHubu.
Patrick Volkerding oznámil před dvaatřiceti lety vydání Slackware Linuxu 1.00. Slackware Linux byl tenkrát k dispozici na 3,5 palcových disketách. Základní systém byl na 13 disketách. Kdo chtěl grafiku, potřeboval dalších 11 disket. Slackware Linux 1.00 byl postaven na Linuxu .99pl11 Alpha, libc 4.4.1, g++ 2.4.5 a XFree86 1.3.
Ministerstvo pro místní rozvoj (MMR) jako první orgán státní správy v Česku spustilo takzvaný „bug bounty“ program pro odhalování bezpečnostních rizik a zranitelných míst ve svých informačních systémech. Za nalezení kritické zranitelnosti nabízí veřejnosti odměnu 1000 eur, v případě vysoké závažnosti je to 500 eur. Program se inspiruje přístupy běžnými v komerčním sektoru nebo ve veřejné sféře v zahraničí.
Vláda dne 16. července 2025 schválila návrh nového jednotného vizuálního stylu státní správy. Vytvořilo jej na základě veřejné soutěže studio Najbrt. Náklady na přípravu návrhu a metodiky činily tři miliony korun. Modernizovaný dvouocasý lev vychází z malého státního znaku. Vizuální styl doprovází originální písmo Czechia Sans.
Vyhledávač DuckDuckGo je podle webu DownDetector od 2:15 SELČ nedostupný. Opět fungovat začal na několik minut zhruba v 15:15. Další služby nesouvisející přímo s vyhledáváním, jako mapy a AI asistent jsou dostupné. Pro některé dotazy během výpadku stále funguje zobrazování například textu z Wikipedie.
Více než 600 aplikací postavených na PHP frameworku Laravel je zranitelných vůči vzdálenému spuštění libovolného kódu. Útočníci mohou zneužít veřejně uniklé konfigurační klíče APP_KEY (např. z GitHubu). Z více než 260 000 APP_KEY získaných z GitHubu bylo ověřeno, že přes 600 aplikací je zranitelných. Zhruba 63 % úniků pochází z .env souborů, které často obsahují i další citlivé údaje (např. přístupové údaje k databázím nebo cloudovým službám).
Open source modální textový editor Helix, inspirovaný editory Vim, Neovim či Kakoune, byl vydán ve verzi 25.07. Přehled novinek se záznamy terminálových sezení v asciinema v oznámení na webu. Detailně v CHANGELOGu na GitHubu.
Tento zápisek volně navazuje na víc jak dva roky starý (ten čas ale letí...) článek Škálování quadcore při kompilaci jádra. Nevím kdy přesně v jádře přibyla volba pro hotplugování procesorů, každopádně nyní tam je a to nám umožňuje snadno emulovat počítač s méně jádry a docílit tím přesnějšího srovnání. Z hlediska CPU se změnilo za ty dva roky poměrně málo- stále zde máme čtyřjádrové procesory, frekvence se nehla ani o píď a zlepšení v architektuře nejsou ani na straně intelu (Nahalem) ani AMD (novější Phenomy) ničím, kvůli čemu by musel člověk sbírat čelist z podlahy. Snad jen servery s 2x čtyřjádrovými procesory jsou nyní častějším jevem, na desktopu to je ale relativně vzácnost.
2x X5482 (3.2 GHz), tyto procesory jsou více známy pod názvem Core 2 Extreme QX9775, protože pod tímto značením se prodávaly v Intel SkullTrail sestavách, 16 GiB DDR2 800 MHz FB DIMM
Jádro 2.6.31.5, vanilkové. gcc 4.3.4
Metodika se od minula nijak nezměnila akorát jsem neměřil kompilaci jádra se všemi volbami, neboť časy byly příliš dlouhé a já potřeboval provést spoustu měření. Použil jsem tedy .config jádra, které běžně používám. Pro simulaci počítače s méně jádry jsem použil "hotplug"
echo 0 > /sys/devices/system/cpu/cpuN/online //místo N se dosadí číslo jádra
kernel z něho odmigruje všechny procesy, zamorduje příslušné kernel thready a snad i přepne do nějakého úsporného režimu. Pro systém dané jádro přestane existovat, není ani v /proc/cpuinfo. Starší metodou je předání jádru parametru maxcpus při bootu a ještě starší omezení počtu procesorů v .config. Ne-SMP jádra, tedy s efektivnějšími implementacemi některých zámků, se už dneska v žádné distribuci nevyskytují ale ta volba v konfiguraci jádra stále je. Záměrně jsem tedy vynechal měření "jednojádra".
graf říká vše Opticky se zdá, že osmijádro oproti čtyřjádru nedává výrazně lepší výsledky ale je to jen optický klam, osmijádo zvládne kompilaci 1.87x rychleji. Celkově vzato kompilace jádra škáluje velmi pěkně. Docela by mě zajímalo, jak by vypadala situace na i7 procesoru s aktivovaným hyperthreadingem.
Zajimavé poznatky přináší ješte hodnota user+sys, jinými sklovy kolik času procesory skutečně "odedřou". ta roste z 317 vteřin při -j1 lineárně k 350 při -j16. Jinými slovy o celých 33 vteřin práce procesoru příjdeme kvůli tomu, že se procesy točí ve spinlocku, počítají pomaleji kvuli tahanici o paměťovou sběrnici a L2 cache.
Pokud od rána do večera neděláte nic jiného, než že kompilujete jádo, tak běžte pro osmijádrový počítač. Pozor, tento test říká právě to a nic jiného. Vyvozování jakýchkoliv dalších závěrů jen na vlastní nebezpečí.
Tiskni
Sdílej:
S(N) = 1/((1 - P) + (P / N))
, kde P je cast algoritmu, ktera musi bezet sekvencne a N je pocet procesoru.
problem je, ze P nemusi byt konstanta. hodnota P je dana vstupnimi daty. coz je vicemene intuitivni, ma cenu paralelizovat velke ukoly nez male. a taky a to je hlavni, jsou pripady kdy P je funkci N... coz meni vyzneni celeho ,,zakona'', i.e., jde dosahnout linearniho i super-linearniho zrychleni! to znamena, ze v nekterych pripadech jde treba na dvoujadrovem procesoru dosahnou 10x zrychleni.
na druhou stranu, v pripade parallelniho programovani je potreba prehodnotit cely pristup k navrhu algoritmu a programu... protoze zkusenosti ze sekvencnich algoritmu jsou v pripade parallelnich algoritmu vicemene k nicemu.
vysoké školství produkuje praxií nepolíbené teoretiky-idealisty:-]]
to je něco naprosto z jine galaxie řekl bychto je jasne... svuj notas jsem koupil od dvou ferengu pri ceste po gama-kvadrantu! puvodne jsem ho ani nechtel, ale nakonec jsem se nechal ukacat. :-]
Ale tady asi ani to ne páč 10x zrychlení na dvoujádru to ned8 ani backpruning,takze taky teoretik? v praxi lze dosahnout superlinearniho zrychleni i s ,,beznyma parallelnima'' programama. staci si uvedomit, ze realny program nepouziva jenom CPU... a nadesignovat pak experiment, kde vyjde desetinasobne zrychleni na dvoujadru je uz jenom otazka cviku a trochy praxe. ;-]
To není k smíchu s tím školstvím, já jsem také jeho produktem, vím o čem mluvímja jsem se smal necemu uplne jinemu... :-]]
Tak mi nějaký takový experiment vycházejiící z praxe na reálném hardwarevezmi si nejaky program a do jeho vlaken si pridej parkrat volani sleep(). uvidis, jaky to bude mit vliv na skalovani. ted si vem ten program a misto volani sleep si tam domysli, cekani na diskove I/O, cekani na sit, atd. bohuzel, z jistych duvodu nemuzu byt konkretnejsi...
Tak tim jsi to zabil naprosto.to si jen myslis, nebo jsi to i zkousel? na I/O se musi cekat za vsech okolnosti v sekvencni i nesekvencni variante. jenomze v pripade nesekvencni varianty, zatimco jeden proces ceka na vyrizeni I/O, dalsi muze vyuzivat procesor. jeste bych mel dodat, ze aby to fungovalo (mimo amdahluv zakon) je potreba, aby pocet procesu byl vetsi nez procesoru.
Pořád to v tom nevidím.pointa je v tom, ze I/O se zacne chovat jako dalsi procesor. vezmi si jako trivialni pripad treba jednoprocesorovy stroj s dvema vlaknama, kdy se musi stridave cist a zpracovavat data... zatimco jedno vlakno cte data (nepotrebuje procesor), druhe pracuje... takze uloha skaluje i kdyz by vlastne nemela.
Což takhle ukázka, do kostry pthreads aplikace napasovat nejskou simulaci výpočtu a IO a počítadlo iterací... půl hodinky. Nebo alespoň odkaz na něco, co takhle krásně škáluje.zkus si to naprogramovat sam, hint jsem dal vys. ja uz jsem touto diskuzi zabil vic casu nez je zdravo. a taky diskuzi o tom, ze ten a ten priklad neni optimalni nebo ze neodpovida realite jsem si uzil uz vic nez dost.
pdflush
), mohou běžet na volných procesorech, takže nejen že neubírají procesorový část uživateslkým procesům, ale ješte se ušetří režie přepínání úloh na procesoru (uložení a načtení všech registrů, prohozeni TSS+LDT a pod.).