Po Canonicalu a SUSE oznámil také Red Hat, že bude podporovat a distribuovat toolkit NVIDIA CUDA (Wikipedie).
TrueNAS (Wikipedie), tj. open source storage platforma postavená na Linuxu, byl vydán ve verzi 25.10 Goldeye. Přináší NVMe over Fabric (NVMe-oF) nebo OpenZFS 2.3.4.
Byla vydána OpenIndiana 2025.10. Unixový operační systém OpenIndiana (Wikipedie) vychází z OpenSolarisu (Wikipedie).
České základní a střední školy čelí alarmujícímu stavu kybernetické bezpečnosti. Až 89 % identifikovaných zranitelností v IT infrastruktuře vzdělávacích institucí dosahuje kritické úrovně, což znamená, že útočníci mohou vzdáleně převzít kontrolu nad klíčovými systémy. Školy navíc často provozují zastaralé technologie, i roky nechávají zařízení bez potřebných aktualizací softwaru a používají k nim pouze výchozí, všeobecně známá
… více »Během tradiční ceremonie k oslavě Dne vzniku samostatného československého státu (28. října) byl vyznamenán medailí Za zásluhy (o stát v oblasti hospodářské) vývojář 3D tiskáren Josef Průša. Letos byly uděleny pouze dvě medaile Za zásluhy o stát v oblasti hospodářské, druhou dostal informatik a manažer Ondřej Felix, který se zabývá digitalizací státní správy.
Tor Browser, tj. fork webového prohlížeče Mozilla Firefox s integrovaným klientem sítě Tor přednastavený tak, aby přes tuto síť bezpečně komunikoval, byl vydán ve verzi 15.0. Postaven je na Firefoxu ESR 140.
Bylo oznámeno (cs) vydání Fedora Linuxu 43. Ve finální verzi vychází šest oficiálních edic: Fedora Workstation a Fedora KDE Plasma Desktop pro desktopové, Fedora Server pro serverové, Fedora IoT pro internet věcí, Fedora Cloud pro cloudové nasazení a Fedora CoreOS pro ty, kteří preferují neměnné systémy. Vedle nich jsou k dispozici také další atomické desktopy, spiny a laby. Podrobný přehled novinek v samostatných článcích na stránkách Fedora Magazinu: Fedora Workstation, Fedora KDE Plasma Desktop, Fedora Silverblue a Fedora Atomic Desktops.
Elon Musk oznámil (𝕏) spuštění internetové encyklopedie Grokipedia (Wikipedia). Zatím ve verzi 0.1. Verze 1.0 prý bude 10x lepší, ale i ve verzi 0.1 je podle Elona Muska již lepší než Wikipedia.
PSF (Python Software Foundation) po mnoha měsících práce získala grant ve výši 1,5 milionu dolarů od americké vládní NSF (National Science Foundation) v rámci programu "Bezpečnost, ochrana a soukromí open source ekosystémů" na zvýšení bezpečnosti Pythonu a PyPI. PSF ale nesouhlasí s předloženou podmínkou grantu, že během trvání finanční podpory nebude žádným způsobem podporovat diverzitu, rovnost a inkluzi (DEI). PSF má diverzitu přímo ve svém poslání (Mission) a proto grant odmítla.
Balík nástrojů Rust Coreutils / uutils coreutils, tj. nástrojů z GNU Coreutils napsaných v programovacím jazyce Rust, byl vydán ve verzi 0.3.0. Z 634 testů kompatibility Rust Coreutils s GNU Coreutils bylo úspěšných 532, tj. 83,91 %. V Ubuntu 25.10 se již používá Rust Coreutils místo GNU Coreutils, což může přinášet problémy, viz například nefunkční automatická aktualizace.
$_, @X, regulární výrazy) jej předčí pouze Perl6. A to z něj spolu s spolu s konstrukcí eval, oddělovačem příkazů a nepovinným odsazováním dělá ideální jazyk pro psaní podobných věcí.
V případě pythonu jsme ochuzeni o zvýšený výskyt podivných znaků, snad s výjimkou podtržítka. A rovněž je velká část užitečného kódu v nejrůznějších modulech, které se musí importovat, takže jsou pythonisté postaveni před složitější problém.
Funkcionální programování je deklarativní předpis, kterak transformovat vstup na výstup.Slovo deklarativní pro běžné programátory znamená - žádné pomocné proměnné.
max = 0
for x in (1, 2, 3, 4, 5):
if x > max:
max = x
print max
Takže tento příklad funkcionální rozhodně není, protože v pomocné proměnné max ukládáme stav programu. Toto je imperativní programování, kdy popisujeme jednotlivé stavy programu.
print sorted((1, 2, 3, 4, 5), reverse=True)[0]Toto naopak je funkcionální implementace (a navíc oneliner).
sorted vrací nový seznam, kde je největší prvek na prvním místě. A ten nakonec vrátíme. Pochopitelně, že ve skutečnosti bychom nemuseli seznam řadít opačně a použít index [-1], rekurzivní funkci, anebo dokonce použít zabudovanou funkci max. Jen by ten příklad nebyl tak popisný, i když by třeba mohl mít rozumnou složitost.
Druhý pohled na slovo deklarativní je ten, že říkáme, co se má udělat a ne jak.
To nás přivádí ke druhé části naší definice
Základní strukturou používanou ve funcionálním programování je seznam.Dokonce název jednoho z prvních takových jazyků, Lisp, je zkratka List processor. V případě Pythonu je pak seznamem cokoli z ntice, seznamu, řetězce, slovníku, množíny, iterátoru, generátoru a podobně - dokonce pro to existuje slovo
iterable, tedy cokoli, čím se dá procházet (iterovat).
[výsledek for proměnná in seznam (if podmínka(proměnná)]Zápis list comprehhension v pythonu je takovýto - v hranatých závorkách se nejrpve uvede výsledný záznam seznamu následovaný klíčovým slovem
for. Za tím následují proměnné cyklu (můžeme třeba iterovat přes klíč a hodnotu slovníku zároveň, takže proměnných může být vícero). Za tím je slovo in a seznam, přes který se bude iterovat.
Volitelně může následovat podmínka, přičemž pokud neplatí, je daná hodnota ze seznamu přeskočena.
[(x, x**2) for x in (1, 2, 3, 4, 5) if x != 3] [(1, 1), (2, 4), (4, 16), (5,25)]Takže tento zápis vezme ntici
(1, 2, 3, 4, 5) a pro každý prvek x vrátí dvojici x a druhou mocninu x, s vyjímkou x=3. Jak vidíme, celé funkcionální programování má poměrně blízko k matematice.
Aby to nebylo tak jednoduché, tak existuje i varianta, která má závorky kulaté. Ta se chová stejně jako předchozí příklad, pouze nevrací seznam, ale generator object. Rozdílem je, že se seznam vyhodnotí okamžitě, kdežto generátor až při procházení. Jedním z vedlejších důsledků je, že je snadné mít nekonečný generátor, což se o seznamu říct nedá.
Pak tu máme varianty se složenými závorkami, vracejícími množiny, případně slovníky, ale to už bych zbytečně mátl.
map a filter se s výhodou dají nahradit výše uvedeným konceptem. Pak tu máme anonymní lambda funkce. Takže další moduly, které nás mohou zajímat jsou itertools, které poskytují spousty užitečných funkcí. Potom functools, kam se například poděl reduce() a dost možná i operator, který exportuje operátory pythonu jako standardní funkce.
d = dict()
for line in open("access.log", 'r'):
key = line.split()[0]
d[key] = d.get(key, 0) + 1
for key, count in d.iteritems():
print key, count
Imperativní a neobfuskovaná varianta je snadná. Jdeme přes všechny řádky v souboru, metodou split() oddělíme klíč a pomocí slovníku počítáme jednotlivé výskyty.
import itertools
def keys(f):
return (l.split()[0] for l in open(f, 'r'))
def uniq_c(f):
return ((len(list(g)), key) for key, g in itertools.groupby(sorted(keys(f))))
def format(f):
return "\n".join("%s\t%s" % (cnt, key) for cnt, key in sorted(uniq_c(f), reverse=True))
print format("access.log")
Toto je funkcionální implementace téhož. Jak vidíme, tento styl dost často používá rozdělení problému na podproblémy, čili funkce a jejich následným skládáním problém vyřešíme. Funkce keys je triviální, vrátí seznam (respektive generátor) klíčů ze souboru. Funkce uniq_c obsahuje veškerou logiku, protože nakonec vrátí seznam dvojic (počet-záznamů, klíč), který funkce format už jenom převede do řetězce vhodného k vytištění.
V praxi by všechny výše uvedené funkce očekávaly spíše seznam a konec by se zapsal nějak takto
print format(uniq_c(keys(open("accecc.log"))))
ale při obfuskování na ortogonalitu a znovupoužitelnost zase tolik hledět nemusíme.
Celou logiku tak nese funkce itertools.groupby, která se chová podobně jako unixový příkaz uniq a takto použitá vrací seznam dvojic klíč a _grouper object, což je iterátor obsahující seznam prvků jdoucích po sobě. Pro získání počtu prvků se pak volá len(list(g)).
import itertools, sys; print "\n".join(("%s\t%s" % (cnt, key) for cnt, key in sorted(((len(list(g)), key) for key, g in itertools.groupby(sorted(l.split()[0] for l in open(sys.argv[1], "r")))), reverse=True)))
A teď by měl rozdíl mezi funkcionálním programování a obfuskování poznat opravdu každý. Mimochodem - příklad se spustí takto - python -c 'sem vložte kód' access.log
Category 4: The Old Standby (1 << 5 inmates) Rules: must output "The Perl Journal"; 256 chars
#:: ::-| ::-| .-. :||-:: 0-| .-| ::||-| .:|-. :||
open(Q,$0);while(<Q>){if(/^#(.*)$/){for(split('-',$1)){$q=0;for(split){s/\|
/:.:/xg;s/:/../g;$Q=$_?length:$_;$q+=$q?$Q:$Q*20;}print chr($q);}}}print"\n";
#.: ::||-| .||-| :|||-| ::||-| ||-:: :|||-| .:|
A výsledkem je
#:: 0-.| .-| .|||-| ::-| .||-| ||
print "".join(("".join((y for y in x)) for x in
( (chr (sum( (x if y != 0 else x*20 for y, x in
enumerate ( len(x) if x != "0" else 0 for x in
(x.replace('|',':.:').replace(':','..')for x in
y))))) for y in x) for x in((x.split() for x in
y)for y in (x.split('-') for x in(x[1:] for x in
file(__file__, 'r') if x[0] == '#'))))))
#. :||-| ::||-| :|||-| .:|-| .-.| :-. .:||
Postup při přepisu něčeho takového je v zásadě stejný - je potřeba rozkódovat a pochopit Perlí část, napsat to stejné v Pythonu (pro většinu lidí včetně mě nejprve v imperativní podobě a tu přepsat do funkcionální) a potom z toho udělat jeden řádek.
Tiskni
Sdílej:
eval {
die "Chyba\n";
}; if ($@ eq "Chyba\n") {
print "Vyhozena 'Chyba'\n";
} elsif ($@ eq "JinaChyba\n") {
print "Vyhozena 'JinaChyba'\n";
} else {
print "Vyhozeno neco jineho: $@\n";
die; # Vyhodi znovu
}
print reduce(max, (1, 2, 5, 4, 3))O(n).
>>> print(max(1, 2, 5, 4, 3)) 5
v němž je odsazování součástí syntaxemne osobne to strasne vadi, protoze odsazeni lze provadet dvema ruznymi znaky (mezera a tabulator), coz by ani tak moc nevadilo, pokud by se tyto znaky daly pouhym okne v editoru rozeznat, coz je ale dost problem, pro zacatecnika IMHO velkej (protoze nechape, proc jedno prazdny misto neni steny jako jiny prazdny misto)
oddělovačem příkazů a nepovinným odsazovánímje skvela vec, kdyz chce clovek zapsat perl scriptik na jeden radek
mimochodem díky CESTovi za podnětné zadáníHehe, mel jsem si vymyslet neco lepsiho:) Ale ty tvoje jednoradkovy zapisy se mi zacinaji libit:) Zkusim do toho hada trosku proniknout:)
pro zacatecnika IMHO velkej (protoze nechape, proc jedno prazdny misto neni steny jako jiny prazdny misto)Problém to není. S pár začátečníky v pythonu jsem se už setkal a pochopili to okamžitě (konec konců, když nejsou schopní pochopit tohle, jen stěží pochopí programování v pythonu). Jinak v netriviálních editorech není problém si zobrazení whitespaces povolit (sám to tak mám).
mne osobne to strasne vadi, protoze odsazeni lze provadet dvema ruznymi znaky (mezera a tabulator), coz by ani tak moc nevadilo, pokud by se tyto znaky daly pouhym okne v editoru rozeznat, coz je ale dost problem, pro zacatecnika IMHO velkej (protoze nechape, proc jedno prazdny misto neni steny jako jiny prazdny misto)No a co bude dělat, až uvidí = a ==, to už bude úplně v koncích. Navíc nevidím rozdíl mezi odsazením a {}. Navíc si myslím, že začátečník nebude psát kód v nějakém textovém editoru typu notepad.
Navíc nevidím rozdíl mezi odsazením a {}.Uz jste nekdy kopiroval kod z webu? Odsazeni je obcas udelane tak, ze se pri kopirovani pokazi.
:set lcs=tab\:\|- list
mne osobne to strasne vadi, protoze odsazeni lze provadet dvema ruznymi znaky (mezera a tabulator)To je pravda, i když by to zvedlo vlnu výkřiků - Python ne, tam se odsazuje tabulátory/mezerami.
TabError.
$ cat <<EOF > pok.py
PROG="""
def foo():
print("8 mezer")
\tprint("tab")
\tif True:
\t print("tab + 8 mezer")
foo()
"""
exec(PROG)
EOF
.