plwm je nový, poměrně minimalistický správce oken pro X11. Podporuje dynamické dláždění okny, plochy, pravidla pro okna atd. Zvláštností je, že je napsaný v logickém programovacím jazyce Prolog. Používá implementaci SWI-Prolog.
Na čem aktuálně pracují vývojáři GNOME a KDE Plasma? Pravidelný přehled novinek v Týden v GNOME a Týden v KDE Plasma.
Sean Heelan se na svém blogu rozepsal o tom, jak pomocí OpenAI o3 nalezl vzdálenou zranitelnost nultého dne CVE-2025-37899 v Linuxu v implementaci SMB.
Jiří Eischmann v příspěvku na svém blogu představuje typy, jak lépe chránit své soukromí na mobilním telefonu: "Asi dnes neexistuje způsob, jak se sledování vyhnout úplně. Minimálně ne způsob, který by byl kompatibilní s tím, jak lidé technologie běžně používají. Soukromí ovšem není binární věc, ale škála. Absolutního soukromí je dnes na Internetu dost dobře nedosažitelné, ale jen posun na škále blíže k němu se počítá. Čím méně dat se o vás posbírá, tím nepřesnější budou vaše profily a tím méně budou zneužitelné proti vám."
Byla vydána nová stabilní verze 25.05 linuxové distribuce NixOS (Wikipedie). Její kódové označení je Warbler. Podrobný přehled novinek v poznámkách k vydání. O balíčky se v NixOS stará správce balíčků Nix.
Multiplatformní open source spouštěč her Heroic Games Launcher byl vydán v nové stabilní verzi 2.17.0 Franky (Mastodon, 𝕏). Přehled novinek na GitHubu. Instalovat lze také z Flathubu.
Organizace Apache Software Foundation (ASF) vydala verzi 26 integrovaného vývojového prostředí a vývojové platformy napsané v Javě NetBeans (Wikipedie). Přehled novinek na GitHubu. Instalovat lze také ze Snapcraftu a Flathubu.
Klávesnice IBM Enhanced Keyboard, známá také jako Model M, byla poprvé představena v roce 1985, tzn. před 40 lety, s počítači IBM 7531/7532 Industrial Computer a 3161/3163 ASCII Display Station. Výročí připomíná článek na zevrubném sběratelském webu Admiral Shark's Keyboards. Rozložení kláves IBM Enhanced Keyboard se stalo průmyslovým standardem.
Vyšlo Pharo 13 s vylepšenou podporou HiDPI či objektovým Transcriptem. Pharo je programovací jazyk a vývojové prostředí s řadou pokročilých vlastností.
Java má dnes 30. narozeniny. Veřejnosti byla představena 23. května 1995.
Nedávno jsem psal o papírových dracích, což je termín, který byl zaveden v souvislosti s uvedením-neuvedením GeForce GTX 480 / architektury Fermi, kdy Jen-Hsun Huang mával na pódiu GPU Technology Conference neuměle splácanou maketou karty. Papíroví draci, resp. „paprelaunche“ / papírová představení budoucích produktů jsou zhruba od té doby oblíbenou taktikou firem. Nesouvisí to s Fermi, ale tou dobou obecně firmy začaly přecházet zvývoje pod pokličkou a v maximálním utajení k vývoji, který je sdílen s veřejností. A nejde jen o hardware, tímto způsobem jsou nyní vyvíjeny i operační systémy jako Windows či iOS/„Masox“. Anebo x86 APU, konkrétně AMD „Carrizo“.
Tohle tedy není představení mobilního nástupce architektury Kaveri, nýbrž odhalení architektury, kterou ponesou v budoucnu uvedené čipy. Jejich parametry tedy dnes neznáme, ale víme, jak je architektura vylepšena.
Ve stručnost: CPU část bude lepší/efektivnější, GPU část bude lepší/efektivnější akcelereace videa bude včetně 4k rozlišení a formátu H.265 a ve 3D dojde na delta kompresi či DirectX 12 novinky. Hlavně se ale AMD podařilo opět vylepšit návrh čipu z toho hlediska, aby zabralo co nejméně místa na waferu. Procesorová jádra architektury „SteamRoller“ tak zabírají jen zlomek celého čipu, za použití nových návrhových knihoven (a použití technik pro návrh GPU i na CPU část a naopak) se oproti předchozí generaci podařilo značně zmenšit celkovou plochu čipu. Výroba ale stále bude 28nanometrová, na 14nm FinFET u GlobalFoundries/Samsungu, či 16nm FinFET u TSMC ještě doba neuzrála.
Celkově se tak modelový čip zmenšil o 23 % při stejném výrobním procesu! I díky tomu nabídne (ultra)mobilní Carrizo plně aktivní variantu GPU s 512 stream processory.
Carrizo je silně optimalizované na nízkou spotřebu, resp. co nejvyšší poměr výkon/spotřeba. Jeho doménou tak asi nikdy pořádně nebude desktop, v jehož parametrech již čipy budou silně za optimální mezí pro co nejvyšší energetickou efektivitu. I proto se nyní o Carrizo dozvídáme výhradně jako o mobilním produktu, byť podobně jako u Kaveri nevylučuje nikdo, že i na desktopy dojde.
Novinkou architektury, která dává šanci lépe kompenzovat kolísání napětí v souvislosti s neustálou změnou provozních parametrů čipů, která je dnes obvyklá, je nová technologie Adaptive Clocking. Ta v sub-nanosekundových cyklech měří napájecí napětí a pokud je zjištěn pokles přesahující nastavenou mez, dočasně (opět v nanosekundových řádech) sníží takt. Techniky může být využito buď ke zvýšení výkonu při stejném TDP, nebo ke snížení spotřeby o desetinu (GPU) až pětinu (CPU), v porovnání s předchozí generací. Dalším prvkem, který vylepšuje celkovou bilanci čipu, je „adaptive voltage and frequency scaling“. CPU jádra integrují každé po 10 AVFS prvcích, které měří jeho vlastní takt a napětí. Toho je využíváno k optimálnímu řízení provozních parametrů na úrovni jednotlivých CPU jader, v čemž hraje roli i teplota. Oproti Steamrolleru v Kaveri přináší takto vybavený Excavator v Carrizo až 40% pokles spotřeby. A nakonec jsou zde další low-power techniky, které snižují spotřebu čipu v klidu.
AMD Carrizo je jasný útok na konkurenci všude tam, kde obyčejný základní ARM výkonově nestačí, nebo je prostě architektonicky nepoužitelný. Nejde o tablety a smartphony, pro ně je TDP připravovaných variant Carrizo příliš velké, ale cokoli vyššího bude zajímavé. Přeci jen 512 stream procesorů poslední verze architektury GCNje dostatečně výkonná grafika i při nižších taktech, takže se zde skrývá potenciál pro slušné hraní her i na velmi úsporných noteboocích. Na druhou stranu ani přímá konkurence nespí, čím mám na mysli hlavně 14nm Intel „Broadwell“. Ač jeho GPU nebude lepší, jeho CPU bude zcela dostatečné a konkurenceschopné a valná většina zákazníků si nekupuje mobilní stroj s APU o TDP pod 20 W na hraní her, nýbrž na multimédia a web. A podstatné je to, že zatímco AMD ladí jak o život 28nm výrobu, Intel má 14nm FinFET. Kdyby mělo Carrizo k dispozici nejnovější továrny Intelu, měl by Intel hodně velký problém, ale pro něj hovoří právě onen náskok ve výrobních technologiích.
Na konferenci ISSCC toho bylo k vidění více včetně ohlášení od jihokorejského Samsungu. Ten již od konce loňského roku vyrábí 14nm FinFET technologií a další krok, 10nm FinFET proces, hodlá představit ještě před koncem příštího roku. Začátkem roku 2017 bychom se tak mohli dočkat prvních produktů osazením 10nm FinFET čipy vyrobenými u Samsungu a kdybych si měl tajně tipnout, tak půjde v první vlně jistě o iPhony či něco podobného. A samozřejmě také čipy Samsung Exynos, pro smartphony Galaxy
10nm výroba u Samsungu bude pochopitelně startovat na tomtéž co 14nm, tedy na malých ARMech, případně na čipech typu DRAM a NAND flash. Velké procesory zatím Samsung nedělá, ale je otázkou, kam se to vyvine se 14nm FinFET výrobou, kterou sdílí i GlobalFoundries. Ta totiž vyrábí pro AMD některé jeho čipy a pokud bude spolupráce obou firem i nadále pokračovat, mohli bychom se jednoho dne dočkat i maličkých 10nm FinFET APU na bázi Samsungova procesu.
O den dříve ohlásil svoje detaily k výrobním technologiím Intel. Největší procesorový gigant je stále tahounem vývoje, vždyť na 14nm FinFET technologii již nějakou dobu vyrábí i velké x86 procesory. S 10 nanometry čekáme něco podobného, Intel hodlá procesory uvést na trh začátkem roku 2017 a v jeho případě samozřejmě nečekejme ARM, ale x86.
Zajímavější věci se ale budou dít o stupínek dále. 7nm výrobní proces, který by měl přijít někdy kolem roku 2020 (ve druhé polovině 2019, pokud budeme optimističtí), totiž už nebude stavět na křemíku. Tomuto materiálu definitivně dochází dech, 10 nanometrů bude poslední meta a momentálně se v Intelu (sluší se dodat, že už pár let) hledají a zkoušejí nástupnické materiály. Když ale budeme slovíčkařit, tak 7nm křemíkové čipy od jiných výrobců mohou přijít, ono to s tím počítáním nanometrů není tak jednoznačné, vždyť třeba 20nm planar a 16nm FinFET u TSMC se liší z drtivé většiny jen tím, že ten menší má „na výšku“ postavenou konstrukci řídící elektrody (gate), od níž TSMC odvíjí přepočet velikosti tranzistorů.
Nástroje: Tisk bez diskuse
Tiskni
Sdílej:
diff --git a/#1 b/#1 index 9858bfe..0f8b217 100644 --- a/#1 +++ b/#1 @@ -1,3 +1,3 @@ -HonzaRez -Těch překlepů... -http://bandzone.cz/yago +HodneReci +Teda jen prudím... +http://bandzone.cz/yengogo