Společnost comma.ai po třech letech od vydání verze 0.9 vydala novou verzi 0.10 open source pokročilého asistenčního systému pro řidiče openpilot (Wikipedie). Zdrojové kódy jsou k dispozici na GitHubu.
Ubuntu nově pro testování nových verzí vydává měsíční snapshoty. Dnes vyšel 4. snapshot Ubuntu 25.10 (Questing Quokka).
Řada vestavěných počítačových desek a vývojových platforem NVIDIA Jetson se rozrostla o NVIDIA Jetson Thor. Ve srovnání se svým předchůdcem NVIDIA Jetson Orin nabízí 7,5krát vyšší výpočetní výkon umělé inteligence a 3,5krát vyšší energetickou účinnost. Softwarový stack NVIDIA JetPack 7 je založen na Ubuntu 24.04 LTS.
Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB) spolu s NSA a dalšími americkými úřady upozorňuje (en) na čínského aktéra Salt Typhoon, který kompromituje sítě po celém světě.
Společnost Framework Computer představila (YouTube) nový výkonnější Framework Laptop 16. Rozhodnou se lze například pro procesor Ryzen AI 9 HX 370 a grafickou kartu NVIDIA GeForce RTX 5070.
Google oznamuje, že na „certifikovaných“ zařízeních s Androidem omezí instalaci aplikací (včetně „sideloadingu“) tak, že bude vyžadovat, aby aplikace byly podepsány centrálně registrovanými vývojáři s ověřenou identitou. Tato politika bude implementována během roku 2026 ve vybraných zemích (jihovýchodní Asie, Brazílie) a od roku 2027 celosvětově.
Byla vydána nová verze 21.1.0, tj. první stabilní verze z nové řady 21.1.x, překladačové infrastruktury LLVM (Wikipedie). Přehled novinek v poznámkách k vydání: LLVM, Clang, LLD, Extra Clang Tools a Libc++.
Alyssa Anne Rosenzweig v příspěvku na svém blogu oznámila, že opustila Asahi Linux a nastoupila do Intelu. Místo Apple M1 a M2 se bude věnovat architektuře Intel Xe-HPG.
EU chce (pořád) skenovat soukromé zprávy a fotografie. Návrh "Chat Control" by nařídil skenování všech soukromých digitálních komunikací, včetně šifrovaných zpráv a fotografií.
Byly publikovány fotografie a všechny videozáznamy z Python konference PyCon US 2025 proběhlé v květnu.
Čtení a snaha porozumět cizímu kódu může zabrat mnoho času, protože se kód může dotýkat mnoha částí programu. Pokud člověk chce kódu porozumět v globálním měřítku, často se to neobejde bez různých obrázků. Proč si to nezautomatizovat?
Snad všichni znají nástroj call grind, který umí generovat call graph. Ovšem i ten má své hranice. Bohužel ten při použití s programem, u kterého bych si rád call graph vygeneroval padá. Navíc pokud jeho funkci chápu správně generuje call graph jenom pro konkrétní běh programu. Jinak řečeno, hledám program, který tohle zvládne vytáhnout ze zdrojového kódu.
Asi první věc, na kterou narazíte při hledání call graph je článek na Wikipedii. Ze jmenovaných nástrojů se zdá, že CodeViz je přesně to, co hledám.
Jak už to tak bývá ne vše je tak snadné jak se zdá. CodeViz může používat pro zjištění jmen funkcí dvě cesty. Ta snazší je pomocí objdump
. Druhou cestou je cesta s využitím opatchovaného gcc 3.4.6.
Netrvá dlouho a už na mě z konsole kouká hláška make[1]: *** [all] Error 1
a nějaké ty další chyby. Kompilátor se tváří, jako kdyby některé #define nebyly definovány, i když jsou. Není to první podobný problém s gcc 4.5 co mám. Strávil jsem skoro celý den hledáním čistého řešení. To jsem nenašel a skončil jsem u prasáckého zakomentování všech postižených #ifdefů. Tak, konečně se mi to podařilo zkompilovat a nainstalovat a hned CodeViz zkouším. O tom ale později.
Vzhledem k pracnosti zprovoznění opatchovaného gcc jsem se rozhodl udělat PKGBUILD pro Arch Linux. Dalších půl dne v prdeli. Rozhodl jsem se totiž kompilovat gcc ručně, bez použití skriptu v CodeViz. V samotném skriptu narazíte na vtipnou věc. Totiž když kompilujete gcc 3.4.6, tak to skončí chybou. Configure skript totiž u špatně vytvoří config.h pro libiberty. Zvláštní je, že pokud se dělá bootstrap tak se poprvé vygeneruje správně, pro finální kompilaci ale už ne. Řešením je tedy make || true
, aby makepkg neskončilo na chybě kompilace, zkopírováním části install skriptu z CodeViz a znovuspuštením make.
Ale ouha, zase to nefunguje. Nové verze makepkg mají totiž ve chvíli, kdy nějaký příkaz vrátí 1 okamžitě skončí s chybou. Proto jsem také při prvním volání make použil make || true abych se tomu vyhnul. Teď ale narážím na problém, kdy se testuje výstup grepu, jestli není náhodou nulový. Problém je, že grep v tom případě skončí s návratovým kódem 1 a tudíž shodí makepkg. Tady true už nepomůže. Naštěstí stačí postižený test vyhodit. Co to udělá na cizím stroji nevím, ale předpokládám, že ten test dopadne na všech Arch Linuxech stejně.
Funguje to, ale má to své masařky. Nejdřív začnu tím, jak to funguje. Pro začátek musíme vygenerovat soubor s grafem. Na to je v CodeViz skript genfull. Podle potřeby nastavíme jak má získat potřebné symboly a jazyk (C/C++).
Začnu tím jednodušším a tím je získání symbolů pomocí objdump (parametr -g cobjdump pro C resp. cppobjdump pro C++). V tomhle případě genfull rekurzivně prohledá aktuální adresář a hledá binárky, pro které vytvoří soubor full.graph. Samozřejmě binárky musí obsahovat debug symboly, jinak je to k ničemu. Nevýhodou tohohle řešení je, že neuvidíte inlinované fce (ledaže byste vypnuli inlinování).
Samozřejmě o předchozí možnosti jsem se dozvěděl až po tom, co jsem prošel martyriem s kompilací gcc. Takže teď ta horší cesta s gcc. Nejdřív musíme program, pro který chceme callgraph vygenerovat zkompilovat s pomocí opatchovaného gcc. Ten vytvoří ke každému zdrojovému souboru soubor s příponou .cdepn obsahující závislosti. Pokud se program linkuje s nějakou systémovou knihovnou, tak to samozřejmě nepůjde (myšleno na moderní distribuci kompilované gcc 4.x). Naštěstí k linkování dochází až na konci, takže soubory .cdepn jsem získal. Použití genfull je v zásadě stejné, akorát tentokrát vybíráme z možností -g cdepn a cppden.
A nakonec k vygenerování callgraphu. full.graph by prý mělo jít nacpat rovnou do dot (součást GraphViz), ale to nedoporučuji. Callgraph je i u malého projektu dost rozsáhlý na to, abyste se ho vůbec dočkali. Proto CodeViz obsahuje skript gengraph. Ten umožní nastavit nějaká omezení, například maximální hloubku a u které funkce se má začínat. Pokud nespecifikujete jinak, tak se jako výstup použije PostScript.
A nakonec k mouchám. I s použitím gengraph je generování callgraphu dost pomalé (hloubka >3 už se ani nevyplatí), navíc výsledný graf není zrovna přehledný (vždy jsem dostal příšernou nudli). Aby toho nebylo málo, pokud byl graf velký, měl jsem velké problémy s jeho otevřením. Okular i gv si na něm vylámali zuby, gv navíc řvalo nějakou chybu, takže je dost možné, že ps bylo vadné. Používat jiný výstup (konkrétně png) se mi neosvědčilo, kvůli použití Cairo backendu. Ten totiž nezvládne velké bitmapy a výsledek zmenší tak, že je z něj nečitelná mazanice. V mém případě výsledek zmenšil ca 10x.
Ačkoliv CodeViz dělá to co má, vůbec mi nevyhovuje a nakonec používám jiný soft, ale o tom až jindy.
PS: Omluvte případné chyby ale nechce se mi to po sobě číst.
Tiskni
Sdílej: