Americký výrobce čipů Intel propustí 15 procent zaměstnanců (en), do konce roku by jich v podniku mělo pracovat zhruba 75.000. Firma se potýká s výrobními problémy a opouští také miliardový plán na výstavbu továrny v Německu a Polsku.
MDN (Wikipedie), dnes MDN Web Docs, původně Mozilla Developer Network, slaví 20 let. V říjnu 2004 byl ukončen provoz serveru Netscape DevEdge, který byl hlavním zdrojem dokumentace k webovým prohlížečům Netscape a k webovým technologiím obecně. Mozille se po jednáních s AOL povedlo dokumenty z Netscape DevEdge zachránit a 23. července 2005 byl spuštěn MDC (Mozilla Developer Center). Ten byl v roce 2010 přejmenován na MDN.
Wayback byl vydán ve verzi 0.1. Wayback je "tak akorát Waylandu, aby fungoval Xwayland". Jedná se o kompatibilní vrstvu umožňující běh plnohodnotných X11 desktopových prostředí s využitím komponent z Waylandu. Cílem je nakonec nahradit klasický server X.Org, a tím snížit zátěž údržby aplikací X11.
Byla vydána nová verze 6.18 živé linuxové distribuce Tails (The Amnesic Incognito Live System), jež klade důraz na ochranu soukromí uživatelů a anonymitu. Nově se lze k síti Tor připojit pomocí mostu WebTunnel. Tor Browser byl povýšen na verzi 14.5.5. Thunderbird na verzi 128.12.0. Další změny v příslušném seznamu.
Meta představila prototyp náramku, který snímá elektrickou aktivity svalů (povrchová elektromyografie, EMG) a umožňuje jemnými gesty ruky a prstů ovládat počítač nebo různá zařízení. Získané datové sady emg2qwerty a emg2pose jsou open source.
Byla vydána (𝕏) nová verze 25.7 open source firewallové a routovací platformy OPNsense (Wikipedie). Jedná se o fork pfSense postavený na FreeBSD. Kódový název OPNsense 25.7 je Visionary Viper. Přehled novinek v příspěvku na fóru.
Před 40 lety, 23. července 1985, společnost Commodore představila první počítač Amiga. Jednalo se o počítač "Amiga od Commodore", jenž byl později pojmenován Amiga 1000. Mělo se jednat o přímou konkurenci počítače Apple Macintosh uvedeného na trh v lednu 1984.
T‑Mobile USA ve spolupráci se Starlinkem spustil službu T-Satellite. Uživatelé služby mohou v odlehlých oblastech bez mobilního signálu aktuálně využívat satelitní síť s více než 650 satelity pro posílání a příjem zpráv, sdílení polohy, posílání zpráv na 911 a příjem upozornění, posílání obrázků a krátkých hlasových zpráv pomocí aplikace Zprávy Google. V plánu jsou také satelitní data.
Společnost Proxmox Server Solutions stojící za virtualizační platformou Proxmox Virtual Environment věnovala 10 000 eur nadaci The Perl and Raku Foundation (TPRF).
Byla vydána nová verze 2.4.65 svobodného multiplatformního webového serveru Apache (httpd). Řešena je bezpečnostní chyba CVE-2025-54090.
Octave ve snaze podobat se co nejvíce Matlabu obsahuje také podporu pro grafický výstup (ve smyslu kreslení matematických grafů). Samo o sobě však Octave grafy kreslit neumí - pro tento účel využívá program gnuplot (který je tudíž třeba mít v systému nainstalován). Z jistého úhlu pohledu by se dalo říci, že Octave funguje jako překladač kreslících funkcí z Matlabu do gnuplotu - jedním dechem je však nutno dodat, že se jedná o překladač velmi omezený, který zvládá jenom pár základních příkazů a nastavení. Pro plné využití všech možností gnuplotu máme v Octave k dispozici „nízkoúrovňové funkce“, díky kterým můžeme psát přímo příkazy gnuplotu nad daty z Octave. Následující texty se však budou zabývat především příkazy kompatibilními s Matlabem.
Základní princip kreslení dvourozměrných grafů spočívá v zadání souřadnic bodů v kartézské soustavě - Octave vždy dva sousední body spojí úsečkou. Souřadnice bodů se zadávají jako dva vektory, jeden pro x-ové souřadnice a druhý pro y-ové; tyto dva (oba řádkové nebo oba sloupcové, ale hlavně stejně dlouhé) vektory pak figurují jako parametry funkce plot, která zajistí již samotné vykreslení grafu.
Příklad - vytvořme ze čtyř bodů A[0,4]
,
B[5,-2]
, C[1,-3]
a D[3,8]
lomenou
čáru tak, že bod A
bude spojen s bodem B
, bod
B
spojen s bodem C
a konečně také bod
C
spojen s bodem D
:
>> x=[0 5 1 3]; y=[4 -2 -3 8]; >> plot(x,y)
Mělo by se nám otevřít grafické okno gnuplotu vypadající podobně jako na následujícím obrázku:
Vektor x postupně obsahuje x-ové souřadnice zadaných bodů, stejně tak vektor y obsahuje ve stejném pořadí y-ové souřadnice těch stejných bodů. Při vykreslování jsou pak sousední body spojeny úsečkou (tj. vykreslí se mezi nimi rovná čára). Pokud bychom chtěli zajistit, aby byl úsečkou spojen každý bod s každým, musíme to odpovídajícím způsobem zajistit v souřadnicových vektorech:
>> A=[0 4]; B=[5 -2]; C=[1 -3]; D=[3 8]; body=[A;B;C;D;A;C;B;D]; >> plot(body(:,1),body(:,2))
V grafu si také můžeme všimnout, že se automaticky nastaví měřítko grafu, vypíší hodnoty na osách a legenda grafu.
Hned na prvních příkladech tedy vidíme, že výsledné grafy nemusí být těmi správnými grafy z hlediska matematické analýzy, i když právě ty nejspíš budeme chtít ve výsledku vidět. Efektu hladké křivky dosáhneme prostě tím, že spočítáme dostatečný počet souřadnic vykreslovaných bodů. Porovnejte sinusoidu vykreslenou z 11 a 201 bodů:
>> x10=0:pi/5:2*pi; >> plot(x10,sin(x10)) >> % versus >> x200=0:pi/100:2*pi; >> plot(x200,sin(x200))
Uvědomme si u funkce sinus, že se počítá pro každý prvek vektoru x-ových souřadnic, čímž získáváme stejně dlouhý vektor y-ových souřadnic. Abychom si ušetřili čas s vymýšlením formule pro vektor lineárně rozložených x-ových souřadnic, můžeme používat funkci linspace, které zadáme dolní mez, horní mez a počet prvků výsledného vektoru:
>> linspace(0,10,4) ans = 0.00000 3.33333 6.66667 10.00000
Ve výchozím nastavení každé volání příkazu plot inicializuje
výstupní zařízení, tj. smaže případný obsah z předchozích kreslících
výstupů. Pokud chceme do grafu „přikreslovat“, nabízí se nám v
podstatě dvě možnosti, které můžeme libovolně kombinovat. V prvé řadě
můžeme podržet aktuální obsah výstupního zařízení s pomocí funkce
hold. Volána s parametrem on
tuto vlastnost zapíná,
off
značí výchozí stav mazání a konečně volání této funkce bez
parametru přepíná z jednoho stavu do druhého. V jakém stavu se teď
nacházíme, zjistíme funkcí ishold:
>> plot(x,sin(x)) >> ishold ans = 0 >> hold on >> plot(x,cos(x)) >> hold off
Druhou možností je zadání všech grafů do jediného příkazu plot, který může mít variabilní počet parametrů:
>> plot(x,sin(x),x,cos(x))
Přesněji řečeno, funkce plot může zpracovat libovolný počet dvojic x-ových a y-ových souřadnic. Navíc za každou touto dvojicí může následovat třetí volitelný řetězcový parametr, který upřesňuje barvu a styl čáry, respektive popisek k ní. Začněme ilustračním příkladem:
>>
plot(0:5,5:-1:0,'^',0:6,6:-1:0,'Lm
',0:8,8:-1:0,'g*;popisek;' , \
0:.1:9,9:-.1:0,'.3',1:10,9:-1:0,'-@78',2
:10,9:-1:1,'c;usecka;')
Za pomoci čísel, významových znaků a textů mezi středníky tak můžeme u každé vykreslované čáry určit:
-
, tečkovaný -
.
, schodovitý -
L
, nebo vynášecí -
^
r
, g
,
b
, m
,
c
nebo w
s
příslušnými čísly 1
-6
, tj. v
uvedeném pořadí červená, zelená, modrá, purpurová, azurová a bílá. Pokusy
nasvědčují tomu, že i číslům 7-9 nějaké barvy přísluší.*
, +
,
o
, x
, nebo číselně s tím, že v
takovém případě je nutno uvést dvojciferné číslo - první cifra určuje barvu
a druhá cifra symbol (opět lze experimentovat s čísly 1-9). V případě, že
chceme bodový graf, měli bychom uvést, zda body mají -
-@
nebo nemají - @
(výchozí
předpoklad) být spojeny čarou.;popisek;
, středník na konci popisku nesmí chybět.
Výchozí popisek zní „line“ plus pořadové číslo.Obecně nezáleží na pořadí, v jakém se znaky zapíší, přesto to chce trochu experimentovat a nebýt překvapen, že kupříkladu číselná reprezentace barev může na každém výstupním zařízení znamenat něco jiného.
Příští povídání o Octave bude s grafy pokračovat, konkrétně se zaměří na měřítko os, popisky ke grafům a speciální dvourozměrné grafy.
Nástroje: Tisk bez diskuse
Tiskni
Sdílej:
hold 'on'
.
gset mouse
před vyreslením grafu tuto nepříjemnost napraví.