Národní identitní autorita, tedy NIA ID, MeG a eOP jsou nedostupné. Na nápravě se pracuje [𝕏].
Americký výrobce čipů Nvidia se stal první firmou na světě, jejíž tržní hodnota dosáhla pěti bilionů USD (104,5 bilionu Kč). Nvidia stojí v čele světového trhu s čipy pro umělou inteligenci (AI) a výrazně těží z prudkého růstu zájmu o tuto technologii. Nvidia již byla první firmou, která překonala hranici čtyř bilionů USD, a to letos v červenci.
Po Canonicalu a SUSE oznámil také Red Hat, že bude podporovat a distribuovat toolkit NVIDIA CUDA (Wikipedie).
TrueNAS (Wikipedie), tj. open source storage platforma postavená na Linuxu, byl vydán ve verzi 25.10 Goldeye. Přináší NVMe over Fabric (NVMe-oF) nebo OpenZFS 2.3.4.
Byla vydána OpenIndiana 2025.10. Unixový operační systém OpenIndiana (Wikipedie) vychází z OpenSolarisu (Wikipedie).
České základní a střední školy čelí alarmujícímu stavu kybernetické bezpečnosti. Až 89 % identifikovaných zranitelností v IT infrastruktuře vzdělávacích institucí dosahuje kritické úrovně, což znamená, že útočníci mohou vzdáleně převzít kontrolu nad klíčovými systémy. Školy navíc často provozují zastaralé technologie, i roky nechávají zařízení bez potřebných aktualizací softwaru a používají k nim pouze výchozí, všeobecně známá
… více »Během tradiční ceremonie k oslavě Dne vzniku samostatného československého státu (28. října) byl vyznamenán medailí Za zásluhy (o stát v oblasti hospodářské) vývojář 3D tiskáren Josef Průša. Letos byly uděleny pouze dvě medaile Za zásluhy o stát v oblasti hospodářské, druhou dostal informatik a manažer Ondřej Felix, který se zabývá digitalizací státní správy.
Tor Browser, tj. fork webového prohlížeče Mozilla Firefox s integrovaným klientem sítě Tor přednastavený tak, aby přes tuto síť bezpečně komunikoval, byl vydán ve verzi 15.0. Postaven je na Firefoxu ESR 140.
Bylo oznámeno (cs) vydání Fedora Linuxu 43. Ve finální verzi vychází šest oficiálních edic: Fedora Workstation a Fedora KDE Plasma Desktop pro desktopové, Fedora Server pro serverové, Fedora IoT pro internet věcí, Fedora Cloud pro cloudové nasazení a Fedora CoreOS pro ty, kteří preferují neměnné systémy. Vedle nich jsou k dispozici také další atomické desktopy, spiny a laby. Podrobný přehled novinek v samostatných článcích na stránkách Fedora Magazinu: Fedora Workstation, Fedora KDE Plasma Desktop, Fedora Silverblue a Fedora Atomic Desktops.
Elon Musk oznámil (𝕏) spuštění internetové encyklopedie Grokipedia (Wikipedia). Zatím ve verzi 0.1. Verze 1.0 prý bude 10x lepší, ale i ve verzi 0.1 je podle Elona Muska již lepší než Wikipedia.
Vyhodnocením nějakého výrazu v Octave může být také odpověď ano/ne, pravda či nepravda. Typicky lze tohoto dosáhnout srovnáním dvou čísel pomocí relačních operátorů:
>> 4 > 2 ans = 1 >> 10 <= 1 ans = 0
Kladnou odpověď, tedy hodnotu pravda, Octave reprezentuje jako číslo 1, zápornou odpověď neboli nepravdu, pak jako číslo 0. Uveďme si přehled dostupným relačních operátorů v Octave:
a == b | a je rovno b |
a ~= b
| a je různé od b |
a < b | a je menší jak b |
a > b | a je větší jak b |
a <= b | a je menší rovno b |
a >=b | a je větší rovno b |
Jak vidno, pro zapsání nerovnosti máme k dispozici hned tři různé možnosti. Na rozdíl od Matlabu nejsou v Octave k dispozici ekvivalentní srovnávací funkce jako eq, lt, ge apod. (tyto funkce nicméně mohou být v Octave dostupné po instalaci rozšíření, které se snaží o větší kompatibilitu mezi těmito systémy).
Srovnávat lze také celé matice, pokud jsou rozměrově stejné. Výsledkem je stejně velká matice odpovědí - srovnání probíhá prvek po prvku:
>> A=[1 2; 3 4]; B=[1 1; 4 4]; A<B ans = 0 0 1 0
Výsledek lze číst tak, že pouze ve druhém řádku a prvním sloupci je hodnota v matici A ostře menší než v matici B.
S hodnotami pravda a nepravda lze také pracovat při logických operacích. V těchto případech je číslo nula vždy chápáno jako nepravda a jakékoliv jiné, tj. nenulové číslo jako pravda. K dispozici pak máme logický součin, logický součet a negaci:
>> 0 & 1 ans = 0 >> 0 | 1 ans = 1 >> ~6,!(!6) ans = 0 ans = 1
Pro negaci lze použít symbol vlnovka (tilda) nebo vykřičník. Souhrnně tedy:
x & y | x a zároveň y |
x | y | x nebo y |
~x | negace x |
Ani tentokrát nejsou v Octave po vzoru Matlabu ekvivalentní funkce and, or a not. Existuje však funkce xor pro exkluzivní nebo:
>> xor(1,1) ans = 0
K dispozici jsou též operátory pro neúplné vyhodnocování logického součinu a součtu, kdy vyhodnocování skončí v okamžiku, kdy je již znám výsledek na základě části výrazu. Jedná se vlastně o zdvojené symboly pro tyto operace:
>> 0 && (4 < 5) ans = 0 >> 1 || (4 < 5) ans = 1
Ani v jednom z těchto příkladů se nevyhodnocoval výraz 4 < 5, neboť výsledek celého výrazu je jasný již z první části.
Konečně stejně jako u relačních operátorů lze logickými operátory spojovat celé matice, pokud mají stejné rozměry:
>> A=[1;1;0;0]; B=[1;0;1;0]; C=[A, B, A&B, A|B, xor(A,B)] C = 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0
Dodejme ještě, že v Octave existují dvě konstanty true a false (s hodnotami 1 a 0), s kterými lze v logických výrazech pracovat.
Octave obsahuje celou řadu funkcí (s jménem obvykle začínajícím na is), které testují, zda objekt vyhovuje nějakým podmínkám. V prvé řadě sem patří testy na datový typ - isnan, isinf, isstr, finite - dotazy, zda daný objekt je NaN, nekonečno, řetězec či konečné číslo. Je-li testovacím objektem matice, vrací se stejněrozměrná matice výsledků - odpovědí pravd a nepravd v podobě jedniček a nul:
>> M=[27, NaN, -Inf];
>> isnan(M)
ans =
0 1 0
>> isinf(M)
ans =
0 0 1
>> finite(M)
ans =
1 0 0
>> isstr("Ahoj")
ans = 1
Funkce isstr testuje, zda daný objekt je řetězcem - o řetězcích bude podrobné pojednání někdy příště.
Další řada funkcí testuje numerické objekty - isnumeric, isreal, iscomplex, ismatrix, isvector, isscalar - ptáme se, je-li objekt číslo, reálné číslo, komplexní číslo, matice, vektor, skalár:
>> isnumeric(Inf) ans = 1 >> isreal(2.5+6i) ans = 0 >> iscomplex(2.5+6i) ans = 1 >> iscomplex(2.5) ans = 0 >> ismatrix([]) ans = 0 >> isvector([1 2; 3 4]) ans = 0 >> isscalar([1 1]) ans = 0
Mezi dalšími testovacími funkcemi je vhodné zmínit se zejména o:
Příklady:
>> issquare(ones(5)) ans = 5 >> isbool(5 >= 0 & xor(1,0)) ans = 1 >> isbool(1) ans = 0 >> isempty([]) ans = 1 >> is_duplicate_entry([1 2 3 1 1 3 3 1]) ans = 5
Poslední příklad vyšel roven pěti, protože kromě jedničky na prvním místě vstupního vektoru zde jsou ještě 3 další duplicity jedniček a k trojce uvedené na třetím místě dále figurují další 2 duplicity: 3 + 2 = 5. Výše uvedený výčet jednoduchých testovacích funkcí není zdaleka úplný, o některých ještě bude řeč dále, ostatní lze nalézt v nápovědě.
Hodnoty pravda a nepravda také vrací funkce any a all. První jmenovaná se ptá, zda-li je ve zkoumaném vektoru alespoň jeden prvek nenulový, druhá pak, zda-li jsou všechny prvku ve vektoru nenulové:
>> V=[0 1 2 3]; W=[1 2 3 4]; X=[0 0 0 0]; >> any(V), any(W), any(X) ans = 1 ans = 1 ans = 0 >> all(V), all(W), all(X) ans = 0 ans = 1 ans = 0
Pokud tyto funkce aplikujeme na matici, jako výsledek získáme vektor odpovědí - ke každému sloupci matice jednu:
>> A=[0 1 0; 1 2 0] A = 0 1 0 1 2 0 >> any(A),all(A) ans = 1 1 0 ans = 0 1 0
Kde je v odpovědi jednička, tak v takovém sloupci v pořadí daná podmínka platí. Chceme-li získat jedinou odpověď pro celou matici, můžeme funkce aplikovat vícekrát. Dotaz
>> any(any(A)) ans = 1
zjistí, zda v celé matici je alespoň jedno číslo nenulové; kombinací funkcí
>> all(any(A)) ans = 0
zase zjistíme, zda všechny sloupce matice obsahují alespoň jedno nenulové číslo apod.
Zatímco funkce any a all dávaly odpovědi ano a ne, s pomocí funkce find lze najít pozice prvků, které nějakou podmínku splňují. Přesně definováno funkce find vrací sloupcový vektor pozic nenulových prvků v matici:
>> find(A) ans = 2 3 4
V takovémto jednoduchém případě se pozice počítají od jedničky po sloupcích směrem od shora dolů, aktuální pozice tedy odpovídá přepočtu řádek + počet řádků × (sloupec -1):
A = % Pozice v A = 0 1 0 % 1 3 5 1 2 0 % 2 4 6
Funkci find lze „donutit“, aby pozice prvků vracela jako dva vektory, kdy v jednom budou indexy řádků a ve druhém indexy sloupců; správné souřadnice pak získáme, vezmeme-li dvojice čísel ze stejných pozic v těchto vektorech:
>> [radky, sloupce]=find(A) radky = 2 1 2 sloupce = 1 2 2
Pro lepší přehlednost pak můžeme tyto sloupcové vektory vypsat vedle sebe v jedné matici:
>> [radky, sloupce] ans = 2 1 % čteno po řádcích vidíme souřadnice 1 2 2 2
Výsledek nyní čteme tak, že nenulové prvky jsou v matici A ve druhém řádku a prvním sloupci, v prvním řádku a druhém sloupci a také v druhém řádku a druhém sloupci.
Nakonec si ukažme, jak se se funkce find obvykle používá - pro výpis pozic prvků, které splňují nějakou podmínku:
>> find(A==0) ans = 1 5 6
Na vypsaných pozicích je v matici A číslo nula.
Nástroje: Tisk bez diskuse
Tiskni
Sdílej: