Hodnota Bitcoinu, decentralizované kryptoměny klesla pod 70 000 dolarů (1,44 milionu korun).
Valve z důvodu nedostatku pamětí a úložišť přehodnocuje plán na vydání zařízení Steam Controller, Steam Machine a Steam Frame: „Cílem tedy stále zůstává vydat všechna tři nová zařízení v první polovině letošního roku, ale přesná data a ceny jsou dvě věci, na kterých usilovně pracujeme a jsme si dobře vědomi toho, jak rychle se v tomto ohledu může vše změnit. Takže ač dnes žádné zveřejnitelné údaje nemáme, hned jak plány finalizujeme, budeme Vás informovat.“
Do 20. února lze hlasovat pro wallpapery pro Ubuntu 26.04 s kódovým názvem Resolute Raccoon.
Byla vydána lednová aktualizace aneb nová verze 1.109 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.109 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Na Kickstarteru běží kampaň na podporu modulárního otevřeného handheldu Mecha Comet s Linuxem.
V nedávno zveřejněné kolekci dokumentů souvisejících s kontroverzním finančníkem a kuplířem Jeffrey Epsteinem se překvapivě objevil i referenční manuál unixového shellu Bash, jedná se o verzi manuálu z roku 2005. Aktuální vydání si lze stáhnout ze stránek GNU.
The Document Foundation oznámila vydání nové verze 26.2 svobodného kancelářského balíku LibreOffice. Podrobný přehled nových vlastností i s náhledy v poznámkách k vydání (cs). Vypíchnout lze podporu formátu Markdown.
Co se děje ve zprávách, ví asi každý - válka sem, clo tam, demonstrace na jednu i druhou stranu a bastlíř už má pocit, že se snad ani nic jiného neděje. To by však byl velký omyl a Virtuální Bastlírna je zde jako každý měsíc, aby vytáhla na světlo světa události ze světa vědy a techniky. Připojte se tedy nezávaznému povídání Strahovského MacGyvera! Co se tam bude probírat? PCBWay začalo dělat průhledné plošňáky, MARS končí s výrobou skříněk, FEL
… více »Guvernérka státu New York Kathy Hochul (Demokraté) plánuje novou legislativu, která by měla omezit výrobu 3D tištěných zbraní. Tento návrh zákona zavádí povinnost pro všechny 3D tiskárny prodávané ve státě New York obsahovat 'software' bránící ve výrobě zbraní. Návrh zákona rovněž zakazuje lidem sdílet 'digitální plány zbraní' (blueprinty) bez povolení. Existují důvodné obavy, že se tento nešťastný nápad může šířit do dalších zemí a ovlivnit celý 3D tisk jako takový. Ostatně, s podobnou regulací nedávno přišel i stát Washington.
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za prosinec 2025 a leden 2026 (YouTube). Zajímavé, že i v roce 2026 celou řadu problémů vyřeší falšování řetězce User-Agent.
Pro seznámení s některými dalšími funkcemi Octave si vyřešíme následující příklad:
Funkci předáme souřadnice čtyř bodů v prostoru. Zkontrolujte, zda tyto body generují prostor a v kladném případě vykreslete čtyřstěn a spočítejte povrch čtyřstěnu.Pro zjednodušení si odpustíme kontrolu počtu vstupních parametrů, tj. zda byly skutečně zadány čtyři tříprvkové vektory, a pustíme se do ověřování, zda body generují prostor:
function povrch=ctyrsten(A,B,C,D)
u=B-A; v=C-A; w=D-A;
if rank([u;v;w]) ~= 3
error('Body negenerují prostor');
else
Z bodů si spočítáme tři vektory, které by měly být lineárně nezávislé, pokud mají generovat prostor. Funkce rank vrací hodnost matice, tj. počet lineárně nezávislých řádků této matice. Pokud tedy sestavíme matici ze spočítaných vektorů a hodnost takové matice bude menší jak tři, vektory jsou lineárně závislé a zadané body negenerují prostor. V opačném případě můžeme pokračovat:
M=[A;B;C;A;D;B;C;D]; plot3(M(:,1), M(:,2), M(:,3)); grid on
Souřadnice bodů jsou naskládány do matice tak, aby zde alespoň jednou každý bod sousedil s každým, funkce plot3 po té vykreslí čtyřstěn, sloupce matice M postupně tvoří x-ové, y-ové a z-ové souřadnice bodů. Příklad má v tomto bodě drobnou nedokonalost - funkce plot3 zatím není součástí oficiální distribuce Octave, lze ji najít v repozitáři doplňkových funkcí na octave.sourceforge.net (více o repozitáři v následujícím dílu).
x=B-D; y=D-C; z=C-B; povrch=obtroj(u,v,z)+obtroj(u,w,x)+obtroj(v,w,y)+obtroj(x,y,z); endif endfunctionDopočítáme zbylé vektory čtyřstěnu a spočítáme povrch jako součet obsahů jeho jednotlivých stěn.
Funkci obtroj pro výpočet obsahu trojúhelníka ze zadaných vektorů můžeme psát jak do dalšího souboru, tak do stávajícího ctyrsten.m ihned za definici hlavní funkce - tvoříme si tak vlastně lokální funkce:
function S=obtroj(va,vb,vc) a=norm(va); b=norm(vb); c=norm(vc); s=(a+b+c)/2; S=(s*(s-a)*(s-b)*(s-c))^(1/2); endfunction
Obsah trojúhelníka počítáme podle Heronova vzorce z délek všech tří stran. Délky nám z příslušných vektorů (ve smyslu vektorové algebry, tj. chcete-li normu či magnitudu) spočítá funkce norm. Nuže zkušební volání naší funkce ctyrsten:
>> ctyrsten([1 4 5], [-4 6 9], [0 0 2], [-8 -3 2]) ans = 115.47 >> who *** dynamically linked functions: dispatch max svd *** currently compiled functions: __plt3__ ctyrsten:obtroj isvector strcmp builtin:rank grid norm columns is_vector plot3 ctyrsten isstr rows
Ve výpisu příkazu who si povšimněte položky ctyrsten:obtroj, která nás informuje, že v rámci funkce ctrysten byla také zkompilována lokální funkce obtroj.

Další funkce týkající se (stejně jako rank a norm) vektorové algebry jsou popsány v nápovědě. Nepřehlédněte dot a cross pro skalární a vektorový součin vektorů.
Pokud hledáme kořeny nějakého polynomu či soustavy lineárních rovnic, je určitě Octave vhodným řešitelem. Pokusme se najít například kořeny následující soustavy tří rovnic o třech neznámých:
-15a - 5b + 6c = -5Snad každý středoškolák ví, že takovéto příklady lze řešit přepsáním soustavy do matice a buď s pomocí Cramerova pravidla (a tedy počítáním determinantů) nebo úpravou matice do schodovitého tvaru získat kořeny soustavy. Ano, takto lze postupovat i v Octave, přičemž díky funkci det pro výpočet determinantu dané matice bude určitě první jmenovaný způsob jednodušší než programování převodu matice na schodovitý tvar, které jako triviální záležitost rozhodně označit nejde:
>> A=[-15 -5 6;3 9 9;-8 5 12]; >> B=[-5;6;7]; >> % Crammerovo pravidlo >> for i=1:length(A) Ai=A; Ai(:,i)=B; x(i)=det(Ai)/det(A); end, x x = -4.0000 7.0000 -5.0000
Nač si však komplikovat život. Pokud matici koeficientů označíme jako A, sloupcový vektor pravých stran jako B a sloupcový vektor kořenů jako X, pak platí A·X = B. Po úpravách dostáváme A-1·A·X = A-1·B, z čehož X = A \ B. Proměnné A a B jsme si již naplnili v předchozím příkladě, takže stačí jedno levostranné dělení:
>> X=A\B X = -4.0000 7.0000 -5.0000
Pro hledání kořenů polynomu existuje v Octave funkce roots. Mějme například následující rovnici:
x5 − 4x4 − 55x3 + 10x2 + 624x + 864 = 0Její kořeny spočítáme následovně:
>> koeficienty=[1 -4 -55 10 624 864]; >> roots(koeficienty) ans = 9.0000 4.0000 -4.0000 -3.0000 -2.0000
Kontrolu správně opsaných koeficientů můžete udělat s pomocí funkce polyout, která vrací textovou reprezentaci polynomu ze zadaného vektoru:
>> polyout(koeficienty, 'x') 1*x^5 - 4*x^4 - 55*x^3 + 10*x^2 + 624*x^1 + 864
Samozřejmě můžeme chtít i opačnou operaci - z vektoru kořenů si nechat spočítat koeficienty polynomu, tato funkce se jmenuje poly:
>> poly([-4 -3 9 4 -2])
ans =
1 -4 -55 10 624 864
Svým způsobem se jedná jen o roznásobení symbolického zápisu (x − x1)(x − x2) ... (x − xn), takže když už jsme u toho násobení, je třeba zmínit funkci conv, která umí násobit dva polynomy. Chtějme vynásobit například (x2 + 4x − 6)(5x + 4):
>> conv([1 4 -6],[5 4])
ans =
5 24 -14 -24
>> [podil, zbytek] = deconv([5 24 -14 -24], [5 4])
podil =
1 4 -6
zbytek =
0 0 0 0
Jak je vidět z příkladu, funkce deconv provádí opak, tj. dělení polynomů.
K dalším užitečným funkcím pro práci s polynomy patří výpočet derivace či integrálu polynomu (funkce polyder a polyinteg), výpočet hodnoty polynomu v daných bodech (polyval) apod.
Vektor lze chápat jako množinu, pokud neobsahuje žádné duplicitní prvky - tento požadavek splní funkce create_set (v Matlabu se tato funkce jmenuje unique):
>> v=[7 7 2 3 3 3 7 7 2]; >> mnozina=create_set(v) mnozina = 2 3 7
Zde je nutno podotknout, že v Octave existuje také funkce values řazená k funkcím popisné statistiky, která dělá totéž co create_set - s tím drobným rozdílem, že výsledkem je sloupcový vektor:
>> values(v) ans = 2 3 7
S množinami pak můžeme dělat jednoduché operace jako sjednocení, průnik a doplněk:
>> union([4 3 2 1],[2 4 6 8]) ans = 1 2 3 4 6 8 >> intersection([4 3 2 1],[2 4 6 8]) ans = 2 4 >> complement([4 3 2 1],[2 4 6 8]) ans = 6 8
Můžete si povšimnout, že tyto funkce výsledky vrací setříděné od nejmenšího čísla po největší.
Nástroje: Tisk bez diskuse
Tiskni
Sdílej: