Vývoj linuxové distribuce Clear Linux (Wikipedie) vyvíjené společností Intel a optimalizováné pro jejich procesory byl oficiálně ukončen.
Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie).
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 12.0 (Mastodon). Forgejo je fork Gitei.
Nová čísla časopisů od nakladatelství Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 155 (pdf) a Hello World 27 (pdf).
Hyprland, tj. kompozitor pro Wayland zaměřený na dláždění okny a zároveň grafické efekty, byl vydán ve verzi 0.50.0. Podrobný přehled novinek na GitHubu.
Patrick Volkerding oznámil před dvaatřiceti lety vydání Slackware Linuxu 1.00. Slackware Linux byl tenkrát k dispozici na 3,5 palcových disketách. Základní systém byl na 13 disketách. Kdo chtěl grafiku, potřeboval dalších 11 disket. Slackware Linux 1.00 byl postaven na Linuxu .99pl11 Alpha, libc 4.4.1, g++ 2.4.5 a XFree86 1.3.
Ministerstvo pro místní rozvoj (MMR) jako první orgán státní správy v Česku spustilo takzvaný „bug bounty“ program pro odhalování bezpečnostních rizik a zranitelných míst ve svých informačních systémech. Za nalezení kritické zranitelnosti nabízí veřejnosti odměnu 1000 eur, v případě vysoké závažnosti je to 500 eur. Program se inspiruje přístupy běžnými v komerčním sektoru nebo ve veřejné sféře v zahraničí.
Vláda dne 16. července 2025 schválila návrh nového jednotného vizuálního stylu státní správy. Vytvořilo jej na základě veřejné soutěže studio Najbrt. Náklady na přípravu návrhu a metodiky činily tři miliony korun. Modernizovaný dvouocasý lev vychází z malého státního znaku. Vizuální styl doprovází originální písmo Czechia Sans.
Vyhledávač DuckDuckGo je podle webu DownDetector od 2:15 SELČ nedostupný. Opět fungovat začal na několik minut zhruba v 15:15. Další služby nesouvisející přímo s vyhledáváním, jako mapy a AI asistent jsou dostupné. Pro některé dotazy během výpadku stále funguje zobrazování například textu z Wikipedie.
Více než 600 aplikací postavených na PHP frameworku Laravel je zranitelných vůči vzdálenému spuštění libovolného kódu. Útočníci mohou zneužít veřejně uniklé konfigurační klíče APP_KEY (např. z GitHubu). Z více než 260 000 APP_KEY získaných z GitHubu bylo ověřeno, že přes 600 aplikací je zranitelných. Zhruba 63 % úniků pochází z .env souborů, které často obsahují i další citlivé údaje (např. přístupové údaje k databázím nebo cloudovým službám).
Během balení rpm se různé věci zapisují do různých adresářů nebo se
v nich hledají. RPM umožňuje flexibilní nastavení adresářové
struktury, pro začátek se však vyplatí seznámit se s tou standardní.
Nainstalujeme-li rpm-build, vytvoří se v /usr/src/RPM
(na RedHatu /usr/src/redhat
, jinde případně i jinde)
následující podadresáře:
SPECS
– sem se instalují spec soubory.SOURCES
– sem se instalují zdrojové kódy a patche.BUILD
– do tohoto adresáře se zdrojové kódy
rozbalují (každý do svého podadresáře) a probíhá v něm vlastní
překlad.RPMS
– adresář, do nejž se po úspěšné
kompilaci nahrají vytvořené binární balíčky. Přesněji do podadresářů
odpovídajících jejich achitektuře (i386
, …,
noarch
).SRPMS
– sem se případně nahraje vytvořený zdrojový balíček.Do /usr/src/RPM
však může zapisovat jen root,
a jelikož k balení rpm není zapotřebí být rootem, nebudeme balit
jako rooti a namísto toho si stejnou adresářovou strukturu vytvoříme
někde v domovském adresáři, řekněme v ~/src/rpm
.
RPM vysvětlíme, že ji má používat, přidáním řádku
%_topdir /home/yeti/src/rpm
do souboru ~/.rpmmacros
. Kdo nemá uživatelské jméno yeti,
nahradí /home/yeti
svým domovským adresářem. Do
/var/tmp
, kam se při balení zapisují a dočasně instalují
soubory, sice zapisovat smíme, budeme však chránit životní prostředí
a změníme i adresář pro dočasné soubory:
%_tmppath /home/yeti/tmp
V souboru ~/.rpmmacros
můžeme změnit řadu dalších
zajímavých věcí, prozatím se spokojíme s nastavením tvůrce balíku:
%packager Yeti <yeti@physics.muni.cz>
Kdo se nejmenuje Yeti, opět změní na svoje jméno, a především adresu.
Hodnota %_topdir
také ovlivňuje, kam se nainstaluje obsah
zdrojového rpm. Nyní tedy můžeme spustit (nebude-li uvedeno jinak, bude se
náš balíček vždy nazývat lobster).
rpm -i lobster-1.10-1.src.rpm
jako obyčejní uživatelé a soubory se objeví
v ~/src/rpm/SOURCES
a ~/src/rpm/SPECS
namísto
v /usr/src/SOURCES
a /usr/src/SPECS
.
Myslíme-li to s balením vážně, budeme chtít oddělit systém, na
němž pracujeme, od cílového systému, pro nějž kompilujeme – byť
by se lišil jen nainstalovaným softwarem. V tom případě cílový
systém nainstalujeme do alternativního rootu a budeme při balení
a testování používat chroot. rpm
a rpmbuild
sice mají argument --root
, ten ale podle mne funguje jaksi
zvláštně. Chrootnout se do alternativního rootu přímo příkazem
chroot
pracuje spolehlivě – jako obyčejní
uživatelé na to ovšem nemáme práva. Distribuce a významní nezávislí
baliči (např. Dag)
vyvinuli různé nástroje a systémy kompilace oproti čistým instalacím
a ověřování balíčků, které má smysl prostudovat, budete-li se
pouštět do nějakých větších akcí.
Než se pustíme do výroby vlastních balíčků, hodí se umět zkompilovat
ty, u nichž už nám někdo všechno přichystal. Argumenty
rpmbuild
u se mírně liší podle toho, z čeho
kompilujeme.
Zdrojový balíček. Máme-li
lobster-1.10-1.src.rpm
, binární rpm z něj vytvoříme
rpmbuild --rebuild lobster-1.10-1.src.rpm
Spec soubor a zdrojový kód. Ze zdrojových
kódů v SOURCES
a spec souboru kdekoli (obvykle ho
ale budeme mít ve SPECS
) zkompilujeme binární balíček
rpmbuild -bb lobster.spec
Ke spec souboru musíme vždy uvést cestu, nehledá se
v SPECS
. S -ba
namísto
-bb
bychom získali binární i zdrojový balíček,
s -bs
jen zdrojový balíček.
Tento způsob použijeme nejen při tvorbě vlastních balíčků, ale také když chceme překompilovat balíček například pro jinou distribuci, který vyžaduje úpravy. Zdrojové rpm nainstalujeme, upravíme, co je zapotřebí, a zkompilujeme rpm z „rozložené“ formy.
Tarová koule. Zabalil-li nám nějaký dobrodinec spec soubor do tarové koule se zdrojovým kódem, můžeme ji přímo přebalit do rpm:
rpmbuild -tb lobster-1.10.tar.bz2
Analogicky předchozí možnosti můžeme -tb
nahradit
-ta
či -ts
a získat obě rpm či jen
zdrojové. Každá volba -bněco
, co se má udělat se
samotným spec souborem (jsou i další než ty tři uvedené, časem na ně
dojde), má své dvojče -tněco
pro spec soubor
obsažený v tarové kouli.
Obrázek shrnuje průběh kompilace a adresáře, jež se účastní výroby RPM balíku ze zdrojového rpm, případně z tarové koule. Adresáře jsou zobrazeny v záhlavích rámečků; rámečky samé ukazují jejich typický obsah. Černé šipky sledují postup kompilace; zelené znázorňují, jak spec soubor řídí jednotlivé její fáze (ty podrobně probereme v další kapitole).
rpmbuild
uNelze přehlédnout, že se při kompilaci vypisují do terminálu spousty
věcí. Sám rpmbuild
vypisuje na standardní výstup informace
o jednotlivých fázích kompilace a na konci, resp. těsně před
koncem, vypíše, co za balíčky vytvořil:
Wrote: /home/yeti/src/RPM/SRPMS/lobster-1.10-1.src.rpm Wrote: /home/yeti/src/RPM/RPMS/i586/lobster-1.10-1.i586.rpm
Na standardní chybový výstup se pak vypisují všechny spuštěné příkazy
stylem sh -x
. Do toho se míchá, co vypisuje na
standardní, resp. chybový výstup ./configure
,
make
, make install
, etc. –
zkrátka pěkný guláš. Zejména z něj nelze snadno vydobýt, jaké balíčky
se nám kde objevily (pokud vůbec), což by se ale často hodilo vědět (volba
--pipe
pomůže jen marginálně). Můžeme si pomoci wrapperem
podobným následujícímu, jenž v případě úspěšné kompilace vypíše jen
jména balíčků, selže-li však něco, vypíše na chybový výstup celý log:
#!/bin/bash outdir=${TMPDIR:-$HOME/tmp} specfile=$(grep -o '\<[a-zA-Z][-_+a-zA-Z0-9]*\.spec\>' <<<"$@" \ || { echo "No spec file" 1>&2; exit 1; } | tail -n 1) log="$outdir/rpmbuild-$specfile-$$.log" if rpmbuild "$@" &>"$log"; then sed 's/^Wrote: //;t;d' "$log" rm "$log" else cat "$log" 1>&2 echo Logfile: "$log" fi
Nástroje: Tisk bez diskuse
Tiskni
Sdílej: