Společnost comma.ai po třech letech od vydání verze 0.9 vydala novou verzi 0.10 open source pokročilého asistenčního systému pro řidiče openpilot (Wikipedie). Zdrojové kódy jsou k dispozici na GitHubu.
Ubuntu nově pro testování nových verzí vydává měsíční snapshoty. Dnes vyšel 4. snapshot Ubuntu 25.10 (Questing Quokka).
Řada vestavěných počítačových desek a vývojových platforem NVIDIA Jetson se rozrostla o NVIDIA Jetson Thor. Ve srovnání se svým předchůdcem NVIDIA Jetson Orin nabízí 7,5krát vyšší výpočetní výkon umělé inteligence a 3,5krát vyšší energetickou účinnost. Softwarový stack NVIDIA JetPack 7 je založen na Ubuntu 24.04 LTS.
Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB) spolu s NSA a dalšími americkými úřady upozorňuje (en) na čínského aktéra Salt Typhoon, který kompromituje sítě po celém světě.
Společnost Framework Computer představila (YouTube) nový výkonnější Framework Laptop 16. Rozhodnou se lze například pro procesor Ryzen AI 9 HX 370 a grafickou kartu NVIDIA GeForce RTX 5070.
Google oznamuje, že na „certifikovaných“ zařízeních s Androidem omezí instalaci aplikací (včetně „sideloadingu“) tak, že bude vyžadovat, aby aplikace byly podepsány centrálně registrovanými vývojáři s ověřenou identitou. Tato politika bude implementována během roku 2026 ve vybraných zemích (jihovýchodní Asie, Brazílie) a od roku 2027 celosvětově.
Byla vydána nová verze 21.1.0, tj. první stabilní verze z nové řady 21.1.x, překladačové infrastruktury LLVM (Wikipedie). Přehled novinek v poznámkách k vydání: LLVM, Clang, LLD, Extra Clang Tools a Libc++.
Alyssa Anne Rosenzweig v příspěvku na svém blogu oznámila, že opustila Asahi Linux a nastoupila do Intelu. Místo Apple M1 a M2 se bude věnovat architektuře Intel Xe-HPG.
EU chce (pořád) skenovat soukromé zprávy a fotografie. Návrh "Chat Control" by nařídil skenování všech soukromých digitálních komunikací, včetně šifrovaných zpráv a fotografií.
Byly publikovány fotografie a všechny videozáznamy z Python konference PyCon US 2025 proběhlé v květnu.
_
Nevíte někdo jak prevést číslo 0,9 na zlomek?
_
Mě pořád vychází že 0.9 se rovná 1
tedy mám na mysli 0,9 periodických... tedy 0999999999999999999999999999999999...
Tiskni
Sdílej:
1 = 1/1 = 9/9 = 9 * 1/9 = 9 * 0.111... = 0.999...
Označme
a := 1,111... b := 0,111...
Intuice nám říká, že a = 10 * b
. Pak už jednoduše spočítáme:
a = 10 * b a - b = 9 * b 1 = 9 * b b = 1 / 9
No a hotovo. Ještě pořád tady něco chybí? Ano, chybí. Ve skutečnosti jsem to neobjasnil ani o trochu víc, protože
a = 10 * b
je stejně silný předpoklad jako 0,111... = 1 / 9
. Pouze je v lepším souladu s naší lidskou intuicí. Toť vše.
Jistě, můžeme si zadefinovat geometrickou řadu. Pak si můžeme odvodit vzorec pro částečný součet geometrické řady a z něj vypočítat jeho slavnou limitu. Taky to vyjde 1 a nebude to IMHO o nic méně „intuitivní“.
Jezkovy voci, lidi, 0.999999999999999999999999999 prece NENI 1 a je uplne jedno, kolik tam tech devitek je. 1 z toho vznikne az zaokrouhlenim!
Samozrejme bezne programy neumi pocitat s dostatecnou (ctete: nekonecnou) presnosti, aby to mohly rozlisit, ale to jeste neznamena, ze 0.99999999999999999999 == 1
Co myslite, 0.5 == 1/2 ?? No vidite, vetsinou ano. Ale ZX-Spectrum vam bude tvrdit, ze ne. Na vine je zpusob reprezentace desetinnych cisel a konecna presnost vypoctu a z ni plynouci zaokrouhlovani.
Stejne tak 1/nekonecno asi bude == 0No, nekonečno není reálné číslo. Ale když to bude příslušná limita, tak máš samozřejmě pravdu.
Stejne tak 1/nekonecno asi bude == 0Ne, není to nekonečno. Jen můžeme říct, že
1/x
se pro x
jdoucí k nekonečnu blíží nule.
0,999... = X (vynasobime rovnicu 10) 9,999... = 10*X (odpocitame 0,999...) 9,999...-0,999... = 10*X-0,999... (na pravej strane substituujeme 0,999... za X, vid uplne prvy riadok) 9 = 10*X-X 9 = 9*X (delime deviatimi) 1 = X (0.999... = 1) QED Iny sposob: 1/3 = 0,333... (vynasobime *3) 1 = 0.999...0,999... je PRESNE ROVNE 1 (aj bez akehokolvek zaokruhovania a nepresnosti)
database...........492 M linux+database.......8 M tj. asi 2 % programming........196 M linux+programming...12 M tj. asi 6 % mathematics.........77 M linux+mathematics....2.5 M tj. asi 3 % science............665 M linux+science.......62 M tj. asi 10 %Takže souvislost mezi linuxem a matematikou určitě je(*), i když přiznávám, spíš v druhém směru (spíš matematik používá linux než linux se používá k matematice). Zajímavý je ten výraz science - přebíjí ve všem database i programming. (*) termíny, které spolu nesouvisí, dávají mnohem menší absolutní i relativní čísla.
Ale osobně u nich nevidím o moc větší souvislost s Linuxem: databáze se dají provozovat i na jiných OS, programuje se na všech OS, chodí sem lidi, které databáze a programování zajímá, ale i takoví, kterým neříká vůbec nic (Linux používají např. jako desktop, nebo spolehlivou platformu pro webový/poštovní server) s matematikou by to bylo podobné...Matematika především vůbec nesouvisí s operačními systémy (Linuxem), ani s tím, na jakém železe jsou provozovány. Je to asi tak taková souvislost, jako by tu někdo chtěl poradnu pro kuchaře, protože vám přece u Linuxu musí vyhládnout.
a bude poradna pro kuchaře? Ovšem s tímto musím souhlasit s Lubošem, protože matematika nemá skoro žádné spojení s Linuxem, kromě toho, že jsou pro něj nějaké programy. Ale to už patří do linuxové poradny. Matiku tedy ne.
Matematická poradna by IMHO nebyla od věci.+1, to by se šiklo, ale řešit tam takový voloviny jako jestli 0.9p == 1 tak nevim nevim...
Je to skutecne tak, jsou to dve reprezentace stejneho cisla, 1. Spouste lidi se to zda prekvapive, protoze maji intuitivni predstavu, ze existuje cosi jako "nekonecne mala" cisla (nebo nekonecne blizka). Ale to je (u realnych nebo racionalnich cisel) zcestna predstava ...Intuitivni predstavy vetsinou funguji jen tehdym kdyz se aplikuji ve stejnych podminkach, jako se vytvorily, tj. ve svete, kde se nekonecna nevyskytuji, rychlosti a hmoty jsou male, vlastni vlnova delka teles zanedbatelna, teploty nizke a prostor nezakriveny. Jak se ale zacnou aplikovat na podminky, kde nekonecna existuji (a to dokonce ruzne velka), rychlosti jsou vysoke, hmoty enormni, vlnova delka vetsi nez vlastni veliksot castice, teploty se radeji meri v elektronvoltech a krivost prostoru je silena, tak intuitivni predstavy zalostne selhavaji. A od urcite hranice uz zadne predstavy nefunguji, protoze to, co si mame predstavit, je prilis odlisne od nasi kazdodeni zkusenosti. Resenim je a) vykaslat se na presnost a pouzit neco, co uz se predtavit da (metoda pouzavana pro vysvetlovani laikum), b) vykaslat se na predstavovani a pouzivat jen matematiku (metoda pouzivana vedci) a c) vykaslat se na realitu a zblaznit se (jako se to stalo treba vyse zminenemu Georgu Cantorovy).
To je sice hezke, ale matematicke axiomy a definice jsou definovane jednoznacne a nezavisle na svete. Jina vec je, co prijimame jako prakticky system axiomu.Přesně tak.
Napriklad axiom nekonecna z teorie mnozin (ze existuje nekonecna mnozina) prijimame celkem bezneNo, a přesto běhají po světě lidé, kteří tento axiom popírají (Google: Mueckenheim). MMCH, axiom nekonečna (naštěstí) neříká, že existuje nekonečná množina, ale říká, že existuje množina přirozených čísel (a zároveň ji definuje). První způsob by byl, jakožto nekonstruktivní, dost k ničemu.
MMCH, axiom nekonečna (naštěstí) neříká, že existuje nekonečná množina, ale říká, že existuje množina přirozených čísel (a zároveň ji definuje). První způsob by byl, jakožto nekonstruktivní, dost k ničemu.Nicmene i takove (nekonstruktivni) axiomy existuji, treba velmi popularni axiom vyberu.
(ackoliv nekonecne mala cisla definovat muzeme, ale je to slozita technicka zalezitost a jak rikam, jde o neco jineho nez realna cisla, a nema zadne prakticke aplikace).Existuji modely realnych cisel, ve kterem se vyskytuji i nekonecne mala realna cisla. Nedovolil bych si rict, ze by to nemelo zadne prakticke aplikace - Newton a Leibniz zrejme tento model (neformalne) pouzivali. Pozdeji, kdyz se matematika vic precizovala, tak se nevedelo, jak tenhle model presne formalizovat, abychom se vyhli sporum, tak se od nej opustilo a definice i tvrzeni v matematicke analyze se formuluji pomoci zname epsilon-delta metodiky. Precizni formalizace modelu s infinitezimalnimi realnymi cisly se povedla az ve dvacatem stoleti A. Robinsonovi (znama jako nestandardni analyza), nicmene vysledek je IMHO dost esotericky a, prestoze zahrnuje intuitivni koncept infinitezimalnich cisel a mnoho dukazu je v nem jednodussich, tak je v mnoha ohledech dost proti intuici a moc se neujal.
Pozor, nestandardní analýza (Robinson) je něco jiného než alternativní teorie množin (Vopěnka).Ma odpoved se tykala nestandardni analyzy budovane v ramci nejake z nestandardnich teorii mnozin (treba UT (Boffa) nebo IST (Nelson)), puvodni Robinsonovu nestandardni analyzu take moc neznam.
factor
). Bohuzel je pro bezne pocitani ponekud nesikovna ...
První ročník gymnázia to není, tam se učí kvadratická rovnice.
Kam ten svět spěje…
Podle toho jak co ... jestli X1, X2 = +B ..., nebo i přímo odvození rozkladu? My měli na gymplu odvození v prváku, na obsah osmičky na základce nepamatuju.
Ono taky popření iracionálních čísel znamenalo počátek stagnace starořecké matematiky, stagnace, ze které už antičtí myslitelé nevybředli.Ja bych rekl, ze vybredli. Jen se od racionalnich cisel presunuli ke geometrii, kde takovy problem nebyl, a rozvinuli ji na uroven, kterou (dovolil bych si rict) za sva studia neobsahne ani vetsina technicky zamerenych vysokoskolaku.
a
a b
jsou celá čísla, pak a / b
je (z definice) racionální číslo (pro b <> 0
). Pokud je c
celé číslo a a / b
je racionální číslo, tak c * a / b
je číslo racionální nebo iracionální?
proč považujete číslo vyjádřitelné podílem dvou celých čísel za iracionálníA k tomu byla moje připomínka jistě správně mířená.
0,9p <> 1
, tak by to znamenalo, že a(b/c) <> (ab)/c
, čiže násobení a dělení by nebylo komutativní. Takže nevěřit tomu, že 0,9p = 1
vede IMHO k daleko absurdnější matematice, než když se 0,9p rovná jedné.
čiže násobení a dělení by nebylo komutativní
To dělení opravdu není. :-) Násobení sice ano, ale tady to nepotřebujete.
MJ, Santiago, Ladicek, Martin Petr, JS, a další moji oblíbení přispěvatelé ruší matematické mýty a přidávají k tomu kapku svého pohledu na matematický svět.Tak to prrr! Co mezi výše jmenovanými dělá ten lůzr?
Vim, že jsme tohle někde (algebra, analýza?) brali, zapsat číslo s konečným počtem desetinných čísel jako zlomek a je mi divný, že to tu nikdo nezmínil ... tušim, že to mělo něco do činění s Taylorovým rozvojem?
Něco by i mohlo. Např. jeden z možných důkazů té rovnosti by spočíval v tom, že se hledá funkce, jejíž rozvoj je
\sum_{n=1}^{\infty} 9x^n
ukáže se, že je to 9x/(1-x)
, a za x
se dosadí 1/10. Ale uznávám, že je to vykonstruované dost uměle.
Budiž, stejně tak zadání mohlo znít: napište číslo X jako Y s chybou menší než Z a ta chyba se pak našla v tom rozvoji někde. (Chvíli jsem pátral v poznámkách a Rektorysovi, bez úspěchu)
Já to vždy dělám takhle: 0,33333... chci převést na zlomek
a = 0,3333...
10*a - a = 3 --> a = 3/9 = 1/3
Doteď jsem to považoval za dostačující pro všechna čísla.
a = 0,123123123...
1000*a - a = 123 --> a = 123/999
Ale s tou 0,999... mi to nějak nevychází
a = 0,999...
10*a - a = 9 --> a = 1